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ABSTRACT
Prediction algorithms assign numbers to individuals that are pop-

ularly understood as individual “probabilities”—what is the prob-

ability of 5-year survival after cancer diagnosis?—and which in-

creasingly form the basis for life-altering decisions. Drawing on an

understanding of computational indistinguishability developed in

complexity theory and cryptography, we introduce Outcome Indis-
tinguishability. Predictors that are Outcome Indistinguishable yield

a generative model for outcomes that cannot be efficiently refuted

on the basis of the real-life observations produced by Nature.

We investigate a hierarchy of Outcome Indistinguishability defi-

nitions, whose stringency increases with the degree to which distin-

guishers may access the predictor in question. Our findings reveal

that Outcome Indistinguishability behaves qualitatively differently

than previously studied notions of indistinguishability. First, we
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provide constructions at all levels of the hierarchy. Then, leverag-

ing recently-developed machinery for proving average-case fine-

grained hardness, we obtain lower bounds on the complexity of

the more stringent forms of Outcome Indistinguishability. This

hardness result provides the first scientific grounds for the political

argument that, when inspecting algorithmic risk prediction instru-

ments, auditors should be granted oracle access to the algorithm,

not simply historical predictions.
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1 INTRODUCTION
Prediction algorithms “score” individuals, mapping them to num-

bers in [0, 1] that are popularly understood as “probabilities” or

“likelihoods:” the probability of 5-year survival, the chance that the

loan will be repaid on schedule, the likelihood that the student will

graduate within four years, or that it will rain tomorrow. Algorith-

mic risk predictions increasingly inform consequential decisions,

but what can these numbers really mean? Five-year survival, four-

year graduation, and rain tomorrow are not repeatable events. The

question of “individual probabilities” has been studied for decades

across many disciplines without clear resolution.
1

One interpretation relies on the coarseness of the representation

of individuals to the prediction algorithm—the shape of a tumor’s

boundaries and the age of the patient; the student’s grades, test

scores, and a few bits about the family situation; the atmospheric

1
See the inspiring paper, and references therein, of Philip Dawid [8], discussing several

notions of individual risk based on different philosophical understandings of probability
“including Classical, Enumerative, Frequency, Formal, Metaphysical, Personal, Propen-

sity, Chance and Logical conceptions of Probability” and proposing a new approach to

characterizing individual risk which, the author concludes, remains elusive.
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pressure, humidity level, and winds—to partition individuals into a

small number of “types.” This leads to a natural interpretation of

the predictions: amongst the individuals of this type, what fraction
exhibit a positive outcome? In the context of modern data science,

however, it is typical to make predictions based on a large number of

expressivemeasurements for each individual—the patient’s genome-

wide risk factors; the borrower’s online transactions and browsing

data; the student’s social media connections. In this case, when

each individual resolves to a unique set of covariates, the frequency-

based interpretation fails.

Another view imagines the existence of a party—Nature—who se-

lects, for each individual, a probability distribution over outcomes;

then, the realized outcome is determined by a draw from this distri-

bution. Note that Nature may select the outcomes using complete

determinism (i.e., probabilities in {0, 1}). This view of the world

gives rise to a statistical model with well-defined individual proba-

bilities, but reasoning about these probabilities from observational

data presents challenges. Given only observations of outcomes,

we cannot even determine whether Nature assigns integer or non-

integer probabilities. Perhaps Nature is deterministic, but we do

not have enough information or computing resources to carry out

the predictions ourselves. Thus, even if we posit that outcomes are

determined by individual probabilities, we cannot hope to recover

the exact probabilities governing Nature, so this abstraction does

not appear to provide an effective avenue for understanding the

meanings of algorithmic risk scores.

1.1 Predictions That Withstand Observational
Falsifiability

Given the philosophical uncertainty regarding the very existence

of randomness, we explore the criteria for an ideal predictor. We

can view the outputs of a prediction algorithm as defining a gen-

erative model for observational outcomes. Ideally, the outcomes

from this generative model should “look like” the outcomes pro-

duced by Nature. To this end, we introduce and study a strong

notion of faithfulness—Outcome Indistinguishability (OI). A predic-

tor satisfying outcome indistinguishability provides a generative

model that cannot be efficiently refuted on the basis of the real-life

observations produced by Nature. In this sense, the probabilities

defined by any OI predictor provide a meaningful model of the

“probabilities” assigned by Nature: even granted full access to the

predictive model and historical outcomes from Nature, no analyst

can invalidate the model’s predictions. Our study contributes a

computational-theoretic perspective on the deeper discussion of

what we should demand of prediction algorithms–a subject of in-

tense study in the statistics community for over 30 years (see, e.g.,
the forecasting work in [7, 14, 16, 37, 38])—and how they should

be used. For example, one of our results provides scientific teeth to

the political argument that, if risk prediction instruments are to be

used by the courts (as they often are in the United States), then at

the very least oracle access to the algorithms should be granted for

auditing purposes.

Outcome Indistinguishability presents a broad framework evalu-

ating algorithmic risk predictions. This paper focuses on the funda-

mental setting of predicting a binary outcome, given an individual’s

covariates, a simple prediction setup that already highlights many

of the challenges and subtleties that arise while defining and rea-

soning about OI. Nothing precludes extending OI to reason about

algorithms that make predictions about more general outcomes.

Due to page limits, this conference version of the manuscript rep-

resents a technical overview of the work. A full version of the

manuscript can be found at [11], which the authors recommend.

Basic notation. We assume that individuals are selected from

some discrete domain X, for example, the set of 𝑑-bit strings2. We

model Nature as a joint distribution, denoted D∗
, over individuals

and outcomes, where 𝑜∗
𝑖
∈ {0, 1} represents Nature’s choice of

outcome for individual 𝑖 ∈ 𝑋 . We use 𝑖 ∼ DX to denote a sample

from Nature’s marginal distribution over individuals and denote

by 𝑝∗
𝑖
∈ [0, 1] the conditional probability that Nature assigns to the

outcome 𝑜∗
𝑖
, conditioned on 𝑖 . We emphasize, however, that Nature

may choose 𝑝∗
𝑖
∈ {0, 1} to be deterministic; our definitions and

constructions are agnostic as to this point.

A predictor is a function 𝑝 : X → [0, 1] that maps an individual

𝑖 ∈ X to an estimate 𝑝𝑖 of the conditional probability of 𝑜∗
𝑖
= 1.

For a predictor 𝑝 : X → [0, 1], we denote by (𝑖, 𝑜𝑖 ) ∼ D(𝑝) the
individual-outcome pair, where 𝑖 ∼ DX is sampled from Nature’s

distribution over individuals, and then the outcome 𝑜𝑖 ∼ Ber(𝑝𝑖 ) is
sampled from the Bernoulli distribution with parameter 𝑝𝑖 .

Outcome Indistinguishability. Imagine that Nature selects 𝑝∗
𝑖
= 1

for half of the mass of 𝑖 ∼ DX and 𝑝∗
𝑖

= 0 for the remainder.

If the two sets of individuals are easy to identify then we can

potentially recover a close approximation to 𝑝∗. Suppose, however,
that the sets are computationally indistinguishable, in the sense

that given 𝑖 ∼ DX , no efficient observer can guess if 𝑝∗
𝑖
= 1 or

𝑝∗
𝑖
= 0 with probability significantly better than 1/2. In this case,

producing the estimates 𝑝𝑖 = 1/2 for every individual 𝑖 ∈ X captures

the best computationally feasible understanding of Nature: given

limited computational power, the outcomes produced by Nature

may faithfully be modeled as a random. In particular, if Nature were

to change the outcome generation probabilities from 𝑝∗ to 𝑝 we, as

computationally bounded observers, will not notice. In other words,

predictors satisfying OI give rise to models of Nature that cannot

be falsified based only on observational data.

In the most basic form of the definition, a predictor 𝑝 : X →
[0, 1] is Outcome Indistinguishable with respect to a family of

distinguishersA if samples from Nature’s distribution (𝑖, 𝑜∗
𝑖
) ∼ D∗

cannot be distinguished by A from samples from the predictor’s

distribution (𝑖, 𝑜𝑖 ) ∼ D(𝑝), meaning that for each algorithm𝐴 ∈ A,

the probability that 𝐴 outputs 1 is (nearly) the same on samples

from each of the two distributions, D∗
and D(𝑝).

Definition (Outcome Indistinguishability). Fix Nature’s dis-
tribution D∗. For a class of distinguishers3 A and Y > 0, a predictor
𝑝 : X → [0, 1] satisfies (A, Y)-outcome indistinguishability (OI) if

2
Individuals can be arbitrarily complex; they are represented to the algorithm as

elements of X. Strictly speaking, distributions over X are induced distributions over

the representations, and our results apply whether or not there are collisions. We do

not assume that Nature’s view is restricted to the representation.

3
Like the predictors, distinguishers have access only to the finite representations of
individuals as elements of X.
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for every 𝐴 ∈ A,����� Pr
(𝑖,𝑜∗

𝑖
)∼D∗

[
𝐴(𝑖, 𝑜∗𝑖 ;𝑝) = 1

]
− Pr

(𝑖,𝑜𝑖 )∼D(�̃�)
[ 𝐴(𝑖, 𝑜𝑖 ;𝑝) = 1 ]

����� ≤ Y.

The definition of Outcome Indistinguishability can be extended

in many ways, for example to settings where distinguishers receive

multiple samples from each distribution, or when they have access

to the program implementing 𝑝 , and to the case of non-Boolean

outcomes.

In the extreme, when we think ofA as the set of all efficient com-

putations, outcome indistinguishability sets a demanding standard

for predictors that model Nature. Given an OI predictor 𝑝 , even

the most skeptical scientist—who, for example, does not believe

that Nature can be captured by a simple computational model—

cannot refute the model’s predictions through observation alone.

This framing seems to give an elegant computational perspective on

the scientific method, when consider 𝑝 as expressing a hypothesis

that cannot be falsified through observational investigation.

1.2 Our Contributions
The most significant contributions of this work can be summarized

as follows:

(1) We define a practically-motivated four-level hierarchy of in-

creasingly demanding notions of Outcome Indistinguishability.
The levels of the hierarchy arise by varying the degree to which

the distinguishers may access the predictive model in question.

(2) We provide tight connections between the two lower levels

of the hierarchy to multi-accuracy and multi-calibration, two
notions defined and studied in [25]. Establishing this connec-

tion immediately gives algorithmic constructions for these two

levels.

(3) We describe a novel algorithm that constructs OI predictors

directly. This construction establishes an upper bound on the

complexity of OI for the upper levels of the hierarchy (and, con-

sequently, also allows us to recover the results of [25] through

the OI framework).

(4) We show a lower bound for the upper levels of the hierarchy,

demonstrating the tightness of our constructions. We prove

that, under plausible complexity-theoretic assumptions, at the

top two levels of the hierarchy, the complexity of implementing

OI predictors cannot scale polynomially in the complexity of

the distinguishers in A and in the distinguishing advantage

1/Y.
Additionally, we revisit the apparent interchangeability of the

terms “test” and “distinguisher” in the literature on pseudoran-

domness, drawing a distinction that is relevant to the forecasting

problem. Our reults clarify the mathematical relationship between

notions in the two literatures.

Next, we present a colloquial illustration of the different notions

of the hierarchy. While very natural, the notions within the hier-

archy have not been fully considered in the literature on either

forecasting or pseudorandomness.

The Outcome Indistinguishability Hierarchy. Imagine a medical

board that wishes to audit the output of a program𝑝 used to estimate

the chances of five-year survival of patients under a given course

of treatment. We can view the medical board as a distinguisher

𝐴 ∈ A. To perform the audit, the board receives historical files of

patients and their five-year predicted (i.e., drawn from D(𝑝)) or
actual (drawn from D∗

) outcomes. The requirement is that these

two cases be indistinguishable to the board.

(1) To start, the board is only given samples, and must distinguish

Nature’s samples (𝑖, 𝑜∗
𝑖
) ∼ D∗

from those sampled according

to the predicted distribution (𝑖, 𝑜𝑖 ) ∼ D(𝑝). The board gets

no direct access to predictions 𝑝𝑖 of the program; we call this

variant no-access-OI.
(2) Naturally, the board may ask to see the predictions 𝑝𝑖 for each

sampled individual. In this extension—sample-access-OI—the
board must distinguish samples of the form (𝑖, 𝑜∗

𝑖
, 𝑝𝑖 ) and

(𝑖, 𝑜𝑖 , 𝑝𝑖 ), again for (𝑖, 𝑜∗
𝑖
) ∼ D∗

and (𝑖, 𝑜𝑖 ) ∼ D(𝑝).
(3) Oracle-access-OI allows the board to make queries to the pro-

gram 𝑝 on arbitrary individuals, perhaps to examine how the

algorithm behaves on related (but unsampled) patients.

(4) Finally, in code-access-OI, the board is allowed to examine not

only the predictions from 𝑝 but also the actual code, i.e., the full
implementation details of the program computing 𝑝 .

On a different axis, we also consider multiple-sample variants

of OI and show how these relate to the single-sample variants

described above. Multiple-sample OI is closer to the problem of

online forecasting (e.g., daily weather forecasting); we explore con-

nections between this variant of OI and the forecasting literature

in Section 1.4.

The Lower Levels of the OI Hierarchy. We begin by examining the

relationship between the different levels of the hierarchy. We show

that no-access-OI and sample-access-OI are closely related to the

notions of multi-accuracy and multi-calibration [25], respectively,

studied in the algorithmic fairness literature. Very loosely, for a col-

lection C of subpopulations of individuals, (C, 𝛼)-multi-calibration

asks that a predictor 𝑝 be calibrated (up to 𝛼 error) not just overall,

but also when we restrict our attention to subpopulations 𝑆 ⊆ X for

every set 𝑆 ∈ C. Here, calibration over 𝑆 means that if we restrict

our attention to individuals 𝑖 ∈ 𝑆 for which 𝑝𝑖 = 𝑣 , then the fraction

individuals with positive outcomes (i.e., 𝑖 ∈ 𝑆 such that 𝑜∗
𝑖
= 1) is

roughly 𝑣 . We prove that sample-access-OI with respect to a set of

distinguishers A is “equivalent" to C-multi-calibration in the sense

that each notion can enforce the other, for closely related classes C
and A.

Theorem 1 (Informal). For any class of distinguishers A and
Y > 0, there exists a (closely related) collection of subpopulations
CA and 𝛼Y > 0, such that (CA , 𝛼Y )-multi-calibration implies (A, Y)-
sample-access-OI. Similarly, for any collection of subpopulations C
and 𝛼 > 0, there exists a (closely related) class of distinguishers AC
and Y𝛼 > 0, such that (AC, Y𝛼 )-sample-access-OI implies C-multi-
calibration.

Importantly, the relation between the class of distinguishers and

collection of subpopulations preserves most natural measures of

complexity; in other words, if we take A to be a class of efficient

distinguishers, then evaluating set membership for the populations

in C will be efficient (and vice versa). No-access-OI is similarly

equivalent to the weaker notion of multi-accuracy, which requires

accurate expectations for each 𝑆 ∈ C, rather than calibration.
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Feasibility and Constructions. We consider the question ofwhether

efficient OI predictors always exist. In particular, we ask, Can we
bound the complexity of OI predictors, independently of the complex-
ity of Nature’s distribution? The picture we uncover is subtle; we
will see that Outcome Indistinguishability differs qualitatively from

prior notions of indistinguishability.

First off, leveraging feasibility results for the fairness notions

from [25], we can obtain efficient predictors satisfying no-access-

OI or sample-access-OI, by reduction to multi-accuracy and multi-

calibration. Informally, for each of these levels, we can obtain OI

predictors whose complexity scales linearly in the complexity ofA
and inverse polynomially in the desired distinguishing advantage Y.

The result is quite generic; for concreteness, we state the theorem

using circuit size as the complexity measure.

Theorem 2. Let A be a class of distinguishers implemented by
size-𝑠 circuits. For any D∗ and Y > 0, there exists a predictor 𝑝 :

X → [0, 1] satisfying (A, Y)-sample-access-OI (similarly, no-access-
OI) implemented by a circuit of size 𝑂 (𝑠/Y2).

Turning now to oracle-access-OI and code-access-OI predictors,

we obtain a general-purpose algorithm for constructing OI predic-

tors, even when the distinguishers are allowed arbitrary access to

the predictor in question. This construction extends the learning

algorithm for multi-calibration of [25] to the more general setting

of OI. When we allow such powerful distinguishers, the learned

predictor 𝑝 is quantitatively less efficient than in the weaker notions

of OI. In this introduction, we state the bound informally, assuming

the distinguishers are implemented by circuits with oracle gates. As

an example, if we let A be the set of oracle-circuits of some fixed

polynomial size (in the dimension 𝑑 of individual’s representations),

and allow arbitrary oracle queries, then 𝑝 will be of size 𝑑𝑂 (1/Y2)
.

Theorem 3 (Informal). Let A be a class of oracle-circuit distin-
guishers implemented by size-𝑠 circuits that make at most 𝑞 oracle
calls to the predictor in question. For any D∗ and Y > 0, there ex-
ists a predictor 𝑝 : X → [0, 1] satisfying (A, Y)-oracle-access-OI
implemented by a (non-oracle) circuit of size 𝑠 · 𝑞𝑂 (1/Y2) .

Intuitively, code-access-OI can implement any of the prior levels

through simulation: given the code for 𝑝 , the distinguishers can

execute oracle calls (or calls to 𝑝𝑖 ) whenever needed.At the extreme

of efficient OI, we consider code-access-OI with respect to the

class of polynomial-sized distinguishers. Importantly, we allow the

complexity of these distinguishers to grow as a (fixed) polynomial in

both the dimension of individuals𝑑 and the length of the description

of the predictor 𝑝 , which we denote by 𝑛. For this most general

version of OI, the complexity may scale doubly exponentially in

poly(1/Y); nevertheless, the bound is independent of the complexity

of 𝑝∗.

Theorem 4 (Informal). For some 𝑑 ∈ N, let X ⊆ {0, 1}𝑑 be
represented by 𝑑-bit strings. Suppose for some 𝑘 ∈ N, A is a class of
distinguishers implemented by circuits of size (𝑑+𝑛)𝑘 , on inputs 𝑖 ∈ X
and descriptions of predictors in {0, 1}𝑛 . For any D∗ and Y > 0, there
exists a predictor 𝑝 : X → [0, 1] satisfying (A, Y)-code-access-OI
implemented by a circuit of size 𝑑2

𝑂 (1/Y2 )
.

Hardness via Fine-Grained Complexity. We establish a connection

between the fine-grained complexity of well-studied problems and

the complexity of achieving oracle-access-OI. Under the assumption

that the (randomized) complexity of counting 𝑘-cliques in 𝑛-vertex

graphs is𝑛Ω (𝑘)
, we demonstrate that the construction of Theorem 3

is optimal up to polynomial factors. Specifically, we rule out (under

this assumption) the possibility that the complexity of a oracle-

access-OI predictor can be a fixed polynomial in the complexity

of the distinguishers in A and in the distinguishing advantage Y.

This hardness result holds for constant distinguishing advantage

Y and for an efficiently-sampleable distribution D∗
. This hardness

results are in stark contrast to the state of affairs for sample-access-

OI (see Theorem 2). Concretely, in the parameters of the upper

bound, the result based on the hardness of clique-counting rules

out any predictor 𝑝 satisfying oracle-access-OI of (uniform) size

significantly smaller than 𝑑Ω (1/𝜖)
.

Theorem 5 (Informal). For 𝑘 ∈ N, assume there exist 𝛼 > 0

s.t. there is no 𝑜 (𝑛𝛼 ·𝑘 )-time randomized algorithm for counting 𝑘-
cliques. Then, there exist: X ⊆ {0, 1}𝑑2

, an efficiently-sampleable
distribution D∗, and a class A of distinguishers that run in time
�̃� (𝑑3) and make �̃� (𝑑) queries, s.t. for Y = 1

100𝑘
, no predictor 𝑝 that

runs in time (𝑑𝛼 ·𝑘 · log−𝜔 (1) (𝑑)) can satisfy (A, Y)-oracle-access-OI.

This lower bound is robust to the computational model: assuming

that clique-counting requires 𝑛Ω (𝑘)
-sized circuits implies a similar

lower bound on the circuit size of oracle-access-OI predictors. The

complexity of clique counting has been widely studied and related

to other problems in the fine-grained and parameterized complexity

literatures. We note that, under the plausible assumption that the

fine-grained complexity of known clique counting algorithms is

tight, our construction shows that obtaining oracle-access-OI is as

hard, up to sub-polynomial factors, as computing 𝑝∗. We emphasize

that this is the case even though the running time of the distin-

guishers can be arbitrarily small compared to the running time of

𝑝∗.

Hardness via BPP ≠ PSPACE. We also show that, under the

(milder) assumption that BPP ≠ PSPACE, there exists a polynomial

collection of distinguishers and a distribution D∗
, for which no

polynomial-time predictor 𝑝 can be OI. The distinction from the

fine-grained result (beyond the difference in the assumptions) is

that here D∗
is not efficiently sampleable, and the distinguishing

advantage for which OI is hard is much smaller.

Theorem 6 (Informal). Assume that BPP ≠ PSPACE. Then,
there exist: X ⊆ {0, 1}𝑑 , a distribution D∗ (which can be sampled in
exp(poly(𝑑)) time), and a classA of poly(𝑑) distinguishers that run
in time poly(𝑑), s.t. for Y = 1

poly(𝑑) , no predictor 𝑝 that runs in time
poly(𝑑) can satisfy (A, Y)-oracle-access-OI.

Discussion. We highlight a few possible interpretations and in-

sights that stem from our technical results. The ability to construct

predictors that satisfy outcome indistinguishability can be viewed

both positively and negatively. On the one hand, the feasibility

results demonstrate the possibility of learning generative models of

observed phenomena that withstand very powerful scrutiny, even

given the complete description of the model. On the other hand,

OI does not guarantee statistical closeness to Nature (it need not

be the case that 𝑝∗ ≈ 𝑝). Thus, the feasibility results demonstrate
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the ability to learn an incorrect model that cannot be detected by

efficient inspection.

More generally, the computational perspective of OI underscores

an inherent limitation in trying to recover the exact laws governing

Nature from observational data alone. We illustrate this perspec-

tive through a comparison to pseudorandomness. Traditionally in

pseudorandomness, our object of desire is random (e.g., a large

string of random bits fed to a BPP algorithm), and we show that

a simple deterministic object suffices to “fool” efficient observers.

In outcome indistinguishability, our object of desire is a model of

Nature, which may obey highly-complex deterministic laws. In this

work, we show that a simple random model of Nature—namely,

D(𝑝) for an OI predictor 𝑝—suffices to “fool” efficient observers. In

this sense, attempting to recover the “true” model of Nature based

on real-world observations is futile: no efficient analyst can falsify

the outcomes of the random model defined by 𝑝 , agnostic to the

“true” laws of Nature.

The most surprising (and potentially-disturbing) aspect of our

results may be the complexity of achieving oracle-access-OI and

code-access-OI. In particular, for these levels, we show strong ev-

idence that there exist 𝑝∗ and A that do not admit efficient OI

predictors 𝑝 , even when A is a class of efficient distinguishers! That
is, there are choices of Nature that cannot be modeled simply, even

if all we care about is passing simple tests. This stands in stark

contrast to the existing literature on indistinguishability, where the

complexity of the indistinguishable object is usually polynomial

in the distinguishers’ complexity and distinguishing advantage,

regardless of the complexity of the object we are trying to imitate.

The increased distinguishing power of oracle access to the pre-

dictor in oracle-access-OI seems to have practical implications. Cur-

rently, there are many conversations about the appropriate usage

of algorithms when making high-stakes judgments about members

of society, for instance in the context of the criminal justice sys-

tem. Much of the discussion revolves around the idea of auditing
the predictions, for accuracy and fairness. The separation between

oracle-access-OI and sample-access-OI provides a rigorous founda-

tion for the argument that auditors should at the very least have

query access to the prediction algorithms they are auditing: given

a fixed computational bound, the auditors with oracle-access may

perform significantly stronger tests than those who only receive

sample access.

1.3 Technical Overview
Next, we give a technical overview of the main results. Our goal

is to convey the intuition for our findings, deferring the technical

details to subsequent sections. For a full account of the results, see

the full version [11].

Relating OI andmulti-calibration. To build intuition for the equiv-
alence, as described informally in Theorem 1, we begin by describ-

ing the construction that establishes the lower level of the equiv-

alence, between multi-accuracy and no-access-OI (distinguishers

that do not directly observe 𝑝𝑖 ). Informally, for a collection of sub-

populations C, multi-accuracy guarantees that the expectations of

𝑝∗
𝑖
and 𝑝𝑖 are approximately the same, even when conditioning on

the event that 𝑖 ∈ 𝑆 (simultaneously for every 𝑆 ∈ C).

Given a subpopulation 𝑆 , we define the multi-accuracy violation

∇𝑆 (𝑝) to be the absolute value of the above difference in condi-

tional expectations. This can be viewed as a direct analogue of

the distinguishing advantage Δ𝐴 (𝑝) (the absolute difference be-

tween the acceptance probability of 𝐴 on a sample from D∗
vs

D(𝑝)). To translate between the notions, we define two mappings

(subpopulations to distinguishers, and distinguishers to subpop-

ulations) that allow us to upper-bound one quantity in terms of

the other. Specifically, given a collection of subpopulations C, we
define a family of distinguishers A = {𝐴𝑆 }, where for all 𝑆 ∈ C,
𝐴𝑆 (𝑖, 𝑏) = 1 [ 𝑖 ∈ 𝑆 ∧ 𝑏 = 1 ].

Note that the probability that each 𝐴𝑆 accepts on a sample

(𝑖, 𝑜𝑖 ) ∼ D(𝑝) is the joint probability that 𝑖 ∈ 𝑆 and 𝑜𝑖 = 1, which

can be directly related to the expectation of 𝑝𝑖 conditioned on 𝑖 ∈ 𝑆 .

This allows us to express the multi-accuracy violation in terms of

the distinguishing advantage, as ∇𝑆 (𝑝) =
Δ𝐴𝑆

(�̃�)
Pr𝑖∼DX [𝑖∈𝑆 ] . By taking

the accuracy parameter in no-access-OI to be sufficiently small, we

can guarantee that no-access-OI implies multi-accuracy. Similarly,

to implement outcome indistinguishability from multi-accuracy,

we define two sets 𝑆 (𝐴,0) and 𝑆 (𝐴,1) for every distinguisher 𝐴 ∈ A
and 𝑏 ∈ {0, 1}, 𝑆 (𝐴,𝑏) = {𝑖 ∈ X : 𝐴(𝑖, 𝑏) = 1}.

Using similar arguments, we show that Δ𝐴 (𝑝) can be upper-

bounded by ∇𝑆 (𝐴,0) (𝑝) + ∇𝑆 (𝐴,1) (𝑝), for which multi-accuracy (w.r.t

the constructed family of subpopulations) provides a bound. Note

that the constructions are very closely related; in fact, repeating the

translation twice reaches a “stable point”. That is, given C (or given

A), we can construct a canonical pair (C′,A ′) such that C′
-multi-

accuracy implies A ′
-no-access-OI, and vice versa. Importantly, C′

is (essentially) of the same complexity as C (resp., A ′
compared to

A), and the degradation in the accuracy parameters only results

from the fact that multi-accuracy is defined for a collection of

arbitrarily small sets.

Showing a similar equivalence for multi-calibration follows the

same general construction, but requires more care. We begin with

the observation that for a fixed predictor 𝑝 , C-multi-calibration

can be viewed as
˜C-multi-accuracy, where each subpopulation in

˜C is obtained as the intersection of some subpopoulation 𝑆 ∈ C
and “level-set” of 𝑝 : {𝑖 ∈ 𝑆 ∧ 𝑝𝑖 = 𝑣}. Thus, at an intuitive level, we

can model the constructions similarly in terms of the sets in
˜C. A

number of technical subtleties arise due to the precise notion of

approximate calibration from [25], which is necessary to provide

sufficiently strong fairness guarantees.

Constructing OI predictors. We establish the complexity of OI

predictors (as in Theorems 3 and 4) by describing a learning al-

gorithm that, given a class of distinguishers A, an approximation

parameter Y, and samples from Nature’s distribution (𝑖, 𝑜∗
𝑖
) ∼ D∗

,

constructs a predictor satisfying outcome indistinguishability, for

any level of the OI hierarchy. To start, inspired by the approach

of [25], we consider a reduction from the task of constructing an

OI predictor to auditing for OI. Specifically, the auditing problem

receives a candidate predictor 𝑝 , and must determine whether for

all 𝐴 ∈ A, the distinguishing advantage Δ𝐴 (𝑝) < Y is small; if

there is an 𝐴 ∈ A that has nontrivial advantage in distinguishing

D∗
from D(𝑝), then the auditor must return such a distinguisher.

Naively, the auditor can be implemented by exhaustive search: for
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each 𝐴 ∈ A, the auditor—using the samples from D∗
as well as

generated samples from D(𝑝)—evaluates the advantage of Δ𝐴 (𝑝),
returning 𝐴 if Δ𝐴 (𝑝) > Y.

Suppose we’re given some candidate predictor 𝑝; by iteratively

auditing and updating, we aim to construct a circuit computing

a predictor 𝑝 that satisfies OI. To start, given the predictor 𝑝 , if

the auditor certifies that 𝑝 passes (A, Y)-OI, then trivially we have

succeeded in our construction. If, however, there is a distinguisher

𝐴 ∈ A with a nontrivial advantage, then 𝑝 fails the audit; in this

case, the successful distinguisher 𝐴 ∈ A witnesses some “direc-

tion” along which 𝑝 fails to satisfy OI. If we can update along this

direction, a standard potential argument (akin to that of boosting

or gradient descent) demonstrates that the updated predictor has

made “progress” towards satisfying OI. Then, we can recurse, call-

ing the auditor on the updated predictor. We argue, the process

must terminate with an OI predictor after not too many rounds of

auditing and updating.

Thus, the crux of the construction is to solve the following prob-

lem: given a circuit computing a predictor 𝑝 and a distinguisher

𝐴 ∈ A that witnesses Δ𝐴 (𝑝) > Y, derive a new circuit computing

an updated predictor 𝑝 ′ that has made progress towards OI. A subtle

issue arises when making this intuition rigorous for oracle-access-

OI and code-access-OI. At these levels of OI, the distinguishers

may access the predictor in question, so there seems to be some

circularity in the construction: to obtain the OI predictor 𝑝 , we need

to call the distinguishers 𝐴 ∈ A; but to evaluate the distinguishers

𝐴 ∈ A, we may need to access 𝑝 . We argue that, in fact, there

is no issue; to avoid the circularity, in each iteration, we can use

the current predictor 𝑝 (𝑡 ) as the “oracle” for the distinguishers in

A. If 𝑝 (𝑡 ) passes auditing by oracle distinguishers 𝐴𝑝 (𝑡 )
, then this

predictor satisfies oracle-access-OI. If 𝑝 (𝑡 ) fails auditing, then we

can still use the distinguisher 𝐴𝑝 (𝑡 )
to derive an update that we

argue makes progress towards Nature’s predictor 𝑝∗. Of course,
because D∗ = D(𝑝∗), 𝑝∗ satisfies OI. Thus, the potential argument

still works, and we guarantee termination after a bounded number

of updates.
4

To finish the construction, we leverage the concrete assumptions

about the model of distinguishers to build up the circuit computing

𝑝 . We focus on obtaining oracle-access-OI for size 𝑠 oracle circuits

that make at most 𝑞 queries to 𝑝 . The argument above ensures that

in the 𝑡-th iteration, we can implement each oracle distinguisher

using (non-oracle) circuits, where each of the 𝑞 oracles calls is re-

placed with a copy of the current predictor 𝑝 (𝑡 ) hard-coded in place

of the oracle gates. Then, we can derive an updated circuit 𝑝 (𝑡+1) by

combining the circuits computing 𝑝 (𝑡 ) and computing𝐴𝑝 (𝑡 )
(taking

an addition of the outputs, with appropriate scaling). This recursive

construction—where we build the circuit computing 𝑝 (𝑡+1) by in-

corporating multiple copies of 𝑝 (𝑡 )—suggests a recurrence relation
characterizing an upper bound on the eventual circuit size. Intu-

itively, with a base circuit size of 𝑠 , and 𝑞 oracle calls (determining

the branching factor), the size of 𝑝 (𝑡 ) grows roughly as 𝑠 ·𝑞𝑡 . Lever-
aging an upper bound on the number of iterations 𝑇 = 𝑂 (1/Y2),
the claimed bound follows.

4
A similar argument holds for code-access-OI, using the description of 𝑝 (𝑡 )

as input.

Establishing the upper bound on the complexity of code-access-

OI follows by a similar high-level argument, but there are some

additional complications. Briefly, because the distinguishers take,

as input, the description of a circuit computing the predictor in

question, we need to work with a class of distinguishers that grows
with the complexity of the predictor itself. We deal with the tech-

nicalities needed to encode and decode predictors so that we can

simulate the lower levels within code-access-OI.

Lower bounds for oracle-access-OI.. To relate the complexity of

evaluating oracle-access-OI predictors to complexity-theoretic as-

sumptions such as the hardness of clique counting or PSPACE-

complete problems (as done in the informal results stated in Theo-

rems 5 and 6), we consider the task of constructing an OI predictor

that needs to withstand the scrutiny of a distinguisher that can

make oracle queries. Suppose we guarantee that any such predictor

must compute a moderately hard function 𝑓 on at least part of

its domain. Then, a distinguisher could use oracle access to the

predictor (on that part of the domain) to perform expensive com-

putations of 𝑓 at unit cost, while scrutinizing other parts of the

domain. As we’ll see, pushing this intuition, we show how efficient

oracle distinguishers can perform surprisingly powerful tests to

distinguish 𝑝 from 𝑝∗.
With this intuition in mind, we divide the domain X into 𝑚

disjoint subsets X1, . . . ,X𝑚 . As a first step, we want to make sure

that it is moderately hard to achieve OI when the distribution D∗

is restricted to X1: for 𝑖 ∈ X1, we set 𝑜∗
𝑖
= 𝑓1 (𝑖), where 𝑓1 is a

moderately hard Boolean function. We will guarantee that any

oracle-access-OI predictor 𝑝 needs to compute 𝑓1 on inputs in X1

by adding a distinguisher 𝐴1 that verifies, for inputs 𝑖 ∈ X1, that

𝑜𝑖 = 𝑓1 (𝑖). At this point, it isn’t clear that anything interesting is

happening: the complexity of achieving OI (i.e., computing 𝑓1) is

not yet higher than the complexity of the distinguisher (which also

needs to compute 𝑓1). However, we can now add a distinguisher

𝐴2 that verifies, for inputs in X2, that 𝑝 also correctly computes a

harder function 𝑓2. The key point is for the distinguisher to verify

that 𝑜𝑖 = 𝑓2 (𝑖) without computing 𝑓2 itself! To achieve this, the

distinguisher can use its oracle access to 𝑝 . In particular, assuming

that 𝑝 correctly computes 𝑓1 on inputs X1, we can use a downwards
self-reduction from computing 𝑓2 on inputs in X2 to computing 𝑓1
on inputs in X1.

The construction proceeds along these lines, using a sequence

of functions {𝑓𝑗 } 𝑗 ∈[𝑚] , where for every 𝑗 ∈ [𝑚] and 𝑖 ∈ X𝑗 , we set

𝑜∗
𝑖
= 𝑓𝑗 (𝑖). Now, for every 𝑗 ∈ [2, . . . ,𝑚], we want the function 𝑓𝑗

to be harder to compute than 𝑓𝑗−1, and we want a downwards self-

reduction from computing 𝑓𝑗 to computing 𝑓𝑗−1. The distinguisher
𝐴 𝑗 uses the given predictor 𝑝 as an oracle to 𝑓𝑗−1, and verifies that

for 𝑖 ∈ X𝑗 , 𝑜𝑖 = 𝑓𝑗 (𝑖). We emphasize that the complexity of the

oracle distinguisher𝐴 𝑗 is proportional to the cost of the downwards

self-reduction, which can (and will) be significantly smaller than

the complexity of computing 𝑓𝑗 .

While intuitively appealing, the discussion above ignores an

important point: OI only provides an approximate guarantee on

the real-valued predictions, not exact recovery of the sequence of

fucntions

{
𝑓𝑗

}
. Starting at the first level of functions, an ({𝐴1}, Y)-

oracle-access-OI predictor 𝑝 only has to correctly compute 𝑓1 in

a limited sense. First, 𝑝 only needs to be correct on average for
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random inputs; it can err completely on some inputs. Second, while

we will choose 𝑓1 (and all the 𝑓𝑗 ’s) to be a Boolean function, the

predictor 𝑝 itself need not be Boolean. Nonetheless, for any input 𝑖 ,

the distinguisher 𝐴1 accepts the input (𝑖, 𝑜𝑖 ) only when 𝑜𝑖 = 𝑓1 (𝑖),
so taking Y small enough guarantees that for any ({𝐴1}, Y)-oracle-
access-OI predictor 𝑝 , with all but small probability over a draw

of 𝑖 from DX restricted to X1, rounding 𝑝 (𝑖) gives the correct

value of 𝑓1. The probability of an error raises a new problem: the

distinguisher 𝐴2, which uses oracle calls to 𝑝 to compute 𝑓1, might

receive incorrect answers! Indeed, we expect the downwards self-

reduction from 𝑓2 to 𝑓1 tomakemultiple queries (since 𝑓2 is harder to

compute), and so the error probability will be amplified. To handle

this difficulty, we also want a worst-case to average-case reduction
for 𝑓1: from computing 𝑓1 on worst-case inputs in X1, to computing

𝑓1 w.h.p. over random inputs drawn from DX restricted to X1.

Indeed, we’ll want a similar reduction for each of the functions

in the hierarchy. For each 𝑗 ∈ [2, . . . , 𝑘], the distinguisher 𝐴 𝑗 will

use the downwards self reduction, to 𝑓𝑗−1, using the worst-case to
average-case reduction for 𝑓𝑗−1 to reduce the error probability of 𝑝

before answering the downward self-reduction’s oracle queries.

We can now make an inductive argument: assume that any 𝑝

that is OI for the distinguishers {𝐴1, . . . , 𝐴 𝑗−1} must compute 𝑓𝑗−1
correctly w.h.p. over inputs drawn from DX restricted to X𝑗−1.
Then 𝑝 is a very useful oracle for the 𝑗-th distinguisher 𝐴 𝑗 , which

uses the downwards self-reduction and worst-case to average-case

reductions, together with its oracle access to 𝑝 , to compute 𝑓𝑗 (and

verify that 𝑜𝑖 = 𝑓𝑗 (𝑖)). The key point is that 𝐴 𝑗 can do this (via

oracle access to 𝑝), even though its running time is much smaller

than the time needed to compute 𝑓𝑗 . In turn, we conclude that any

𝑝 that is OI for the distinguishers {𝐴1, . . . , 𝐴 𝑗 } must compute 𝑓𝑗
correctly w.h.p. over inputs drawn fromDX restricted toX𝑗 . At the

top (𝑚-th) level of the induction, we conclude that a predictor that

is OI for the entire collection of distinguishers must compute 𝑓𝑚
correctly w.h.p. over random inputs. Finally, since we have a worst-

case to average-case reduction for 𝑓𝑚 , this implies that achieving

OI is almost as hard as worst-case (randomized) computation of 𝑓𝑚 .

To instantiate this framework, we need a collection of func-

tions {𝑓𝑗 : {0, 1}𝑛 → {0, 1}}𝑚
𝑗=1

with three properties: (1) “Scalable

hardness”: The complexity of computing 𝑓𝑗 should increase with

𝑗 . A natural goal is 𝑛Θ( 𝑗)
time complexity, where the lower bound

should apply for randomized (BPP) algorithms; (2) Downwards

self-reduction: A reduction from computing 𝑓𝑗 to computing 𝑓𝑗−1,
with fixed polynomial running time and query complexity (ideally

�̃� (𝑛), though we will use a collection where the complexity is a

larger fixed polynomial); (3) Worst-case to average-case reduction:

A reduction from computing 𝑓𝑗 in the worst case, to computing 𝑓𝑗
w.h.p. over a distribution 𝐷 𝑗 .

The clique counting problem presents a natural candidate, where

𝑓𝑗−2 counts the number of 𝑗-cliques in an unweighted input graph

with 𝑛 vertices.
5
The complexity of this well-studied problem is

believed to be 𝑛Θ( 𝑗)
. Goldreich and Rothblum [21] recently showed

a worst-case to average-case reduction for this problem, where

the reduction runs in �̃� (𝑛2) times and makes poly(log𝑛) queries.
The problem also has a downwards self-reduction from counting

5
Clique counting is trivial for cliques of size 1 or 2, and begins being interesting for

3-cliques, or triangle counting.

cliques of size 𝑗 to counting cliques of size ( 𝑗 − 1), which runs in

time 𝑂 (𝑛3) and makes 𝑛 oracle queries (on inputs of size 𝑂 (𝑛2)).
The above construction utilized a sequence of Boolean functions,

whereas the output of the clique-counting function is an integer in

[𝑛 𝑗 ]. We use the Goldreich-Levin hardcore predicate [20] to derive

a Boolean function that is as hard to compute as clique counting.

The above framework can be also be instantiated using the al-

gebraic variants of fine-grained complexity problems studied in

the work of Ball, Rosen, Sabin, and Vasudevan [2, 3]. Interestingly,

downwards self-reducability also comes up in their work [3], where

it is used to argue hardness for batch evaluation of many instances.

Their algebraic variants of the 𝑘-orthogonal-vectors and 𝑘-SUM

problems seem directly suited to our construction. We focus on

clique counting because of the tightness of the upper and lower

bounds that have been suggested and studied in the literature.

For PSPACE hardness of oracle-access-OI, we use a PSPACE-

complete problem that is both downwards self-reducible and ran-

dom self-reducible, due to Trevisan and Vadhan [41]. The perma-

nent [35] (or scaled-down variants thereof, see [21]) seems to be

another promising candidate for our construction. In a different

direction, it is interesting to ask whether moderately hard crypto-

graphic assumptions, as suggested by Dwork and Naor [12], could

also provide candidates.

1.4 Broader Context and Related Notions
A Socio-Technical Path of Progress. A sufficiently rich representa-

tion of real-life individuals implies a mapping from individuals to

their representation as input to the predictor that has no collisions.

In other words, given enough bits of information in the representa-

tion, each individual will have a unique representation. Still, this

richness does not mean that the representation contains the right

information to determine the values of the 𝑝∗
𝑖
, even information-

theoretically. For example, modulo identical twins, individuals’

genomes suffice to uniquely represent every person, but sequences

of DNA are insufficient to determine an individual’s ability to repay

a loan. Alternatively, the necessary information may be present,

but its interpretation may be computationally infeasible.

Generally, we assume that the representation of individuals is

fixed and informative. Our analysis demonstrates that OI is fea-

sible by using a potential argument. Specifically, we describe an

algorithm that iteratively looks for updates to the current set of

predictions that will step closer towards indistinguishability. We

guarantee that the algorithm terminates in a bounded number of

steps by arguing that after sufficiently many updates, the predictor

we hold is essentially 𝑝∗.
In practice, however, it may be the case that our features will

be insufficiently rich to capture 𝑝∗. Given a simple representa-

tion, even if we require a predictor 𝑝 that satisfies OI using a very

computationally-powerful set of distinguishers (e.g., polynomial-

sized circuits), there will be an inherent, information-theoretic

limitation that prevents 𝑝 from converging to 𝑝∗. While, given this

representation of individuals, it may be impossible to distinguish

Nature’s outputs 𝑜∗ from 𝑜 drawn according to 𝑝 , it may be possible

to distinguish the outputs if we obtain an enriched representation

of individuals. Moreover, obtaining an enriched representation may
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even be easy, in that it can be accomplished (by a human) in time

polynomial in the size of the original representation!

The OI framework can be extended naturally, allowing for the

representation of individuals to be augmented throughout time.

Given such an enriched representation, we can continue iteratively

updating 𝑝 , based on the new representation. Specifically, we can

obtain new training data, concatenate the old and enriched repre-

sentations to form a new representation, initialize a new predictor

to equal 𝑝 , and enrich the collection of distinguishers to operate

on the new representation. The new class of distinguishers retains

and adds to the old distinguishing power, so 𝑝 likely will no longer

satisfy OI; thus, we can apply our algorithm, starting at 𝑝 , updating

until the predictor fools the new class of distinguishers. By applying

the same potential argument, we can can guarantee that this process

of augmenting the representations cannot happen too many times.

Any augmentation that significantly improves the distinguishing

advantage between 𝑝∗ and 𝑝 must result in new updates that allow

for significant progress towards 𝑝∗.

Prediction Indistinguishability. In this work, we also investigate

a notion we call Prediction Indistinguishability (PI). In PI we re-

quire the stronger condition that (𝑝∗
𝑖
, 𝑜∗

𝑖
) be indistinghishable from

(𝑝𝑖 , 𝑜∗𝑖 ). While Prediction Indistinguishability is intuitively appeal-

ing, there are very simple distinguishers that show it is too much

to ask for: a predictor 𝑝 is PI with respect to these distinguishers if

and only if 𝑝 is statistically close to 𝑝∗. But indistinguishability as a

concept in computational complexity theory is interesting precisely

when coming up with 𝑝 that is statistically close to 𝑝∗ is impossible.

Moreover, since we never see the values 𝑝∗
𝑖
—we don’t even know

if randomness exists!—we cannot hope to have indistinguishability

of the 𝑝𝑖 from the “true” probabilities and it is strange even to pose

such a criterion. Nonetheless, we show that PI and OI are equivalent

when indistinguishability is with respect to tests that are passed

by all natural histories with high probability (Section 3), which we

discuss in more detail next.

Tests vs. Distinguishers. The framing of outcome indistinguisha-

bility draws directly from the notion of computational indistin-

guishability, studied extensively in the literature on cryptography,

pseudorandomness, and complexity theory (see, e.g., [17–19, 42]

and references therein). A comparison to the extensive literature on

online forecasting clarifies the semantic distinction between two

concepts: tests (in the forecasting literature) and distinguishers (in
the complexity literature).

The forecasting literature focuses on an online setting where

there are two players, Nature and the Algorithm. Nature controls

the data generating process (e.g., the weather patterns), while the

Algorithm tries to assess, on each Day 𝑡 − 1, the probability of

an event on Day 𝑡 (e.g., will it rain tomorrow?). There are many

possibilities for Nature; by definition, in this literature, Nature calls

the shots, in the following sense: On Day 𝑡 − 1, Nature assigns a

probability 𝑝∗𝑡 that governs whether it will rain or not on Day 𝑡 .

Note that Nature is free to select 𝑝∗𝑡 ∈ {0, 1}, in which case the

outcomes are determinsitic, 𝑜∗𝑡 = 𝑝∗𝑡
In the early 1980s, [7] proposed that, at the very least, forecasts

should be calibrated. More stringent requirements were obtained

by considering large (countable) numbers of sets of days, such as

odd days, even days, prime-numbered days, days on which it has

rained for exactly 40 preceding days and nights, and so on, and

requiring calibration for each of these sets simultaneously [38].

This is the “moral equivalent” of multi-calibration in the world of

infinite sequences of online forecasting.

A signal result in the forecasting literature, due to Sandroni [37]

applies to a more general set of tests than calibration tests. Consider

infinite histories, that is, sequences of (prediction, outcome) pairs.

We say a history is natural if it is a sequence ((𝑝1, 𝑜1), (𝑝2, 𝑜2), . . . )
where ∀𝑡 we have 𝑜𝑡 ∼ Ber(𝑝𝑡 ). Note that certain natural histories

may have no connection to any real-life weather phenomena, in-

stead corresponding to a valid but unrealistic choice of 𝑝 . A test
takes as input a (not necessarily natural) history and outputs a

bit. The test is usually thought of as trying to assess whether an

algorithm’s predictions are “reasonably accurate” with respect to

the actual observations. This implicitly focuses attention on tests

that natural histories pass with high probability (over the draws

from the Bernoulli distributions), and indeed, calibration tests fall

into this category. The goal of the Algorithm, then, is to generate

predictions 𝑝 for which the histories ((𝑝1, 𝑜∗
1
), (𝑝2, 𝑜∗

2
), . . . ) pass

the test. Here 𝑝𝑖 is the Algorithm’s forecasted probability of rain

for Day 𝑖 and 𝑜∗
𝑖
is the Boolean outcome, rain or not, that actually

occured on Day 𝑖 .

Sandroni’s powerful result [37], proves, non-constructively
6
,

the existence of an Algorithm that, given any test 𝑇 , yields a

history which passes 𝑇 with probability at least as great as the

minimum probability with which any natural history ((𝑝1, 𝑜 ∼
Ber(𝑝1)), (𝑝2, 𝑜 ∼ Ber(𝑝2)) . . . ) passes 𝑇 (again, the probability is

over the draws from the Ber(𝑝𝑖 ), 𝑖 ≥ 1). The computational com-

plexity of forecasting was studied by Fortnow and Vohra [13] and

by Chung, Lui and Pass [6]. The latter work gave a computational

analogue of Sandroni’s result: for any test 𝑇 that is computable

in polynomial time and that accepts every natural history with

high probability, they construct a polynomial-time forecasting algo-

rithm that passes the test with high probability, so long as Nature

(which generates the outcomes) runs in fixed polynomial time and

assuming also that Nature does not use any hidden state.

There are two major differences between tests in the forecasting

literature and distinguishers in the complexity-theoretic literature.
7

The first is that tests have semantics—you want to pass the test, and

the higher the probability of passing a test the better. In contrast,

distinguishers output 0 or 1 with no semantics, and our goal is to

produce an object such that the distinguisher outputs 1 with the

same probability as the objects that we are imitating. In this case,

getting the distinguisher to output 1 with higher probability may

be worse. The second difference is that in the forecasting setting

we want natural histories to pass the test with high probability: if

natural histories fail the test, how can we interpret the Algorithm’s

inability to pass the test as an indication that the Algorithm is

inaccurate? As a result, the Algorithm does not compete with the

actual Nature 𝑝∗, but only with the hypothetical Nature that passes

the test with the lowest probability.

To highlight these differences, consider a distinguisher that con-

siders two sets of individuals, 𝑆 and𝑇 . For each set, the distinguisher

estimates the outcome probabilities 𝛼𝑆 and 𝛼𝑇—that is, averaged

6
The result leverages Fan’s minimax theorem.

7
Unfortunately, and confusingly, the literature on indistinguishability often conflates

the notions, referring to distinguishers as tests.
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over the individuals 𝑖 ∈ 𝑆 (respectively, 𝑇 ), the probability that

𝑜∗
𝑖
= 1—and outputs 0 with probability |𝛼𝑆 − 𝛼𝑇 | and 1 otherwise.

Note that for some Natures the distinguisher will output 1 with

very small probability. Nevertheless, in cases where Nature treats 𝑆

and 𝑇 equally, the distinguisher will output 1 with high probability

and, OI guarantees that 𝑝 must also treat 𝑆 and 𝑇 equally. Many

properties of samples from a distribution are quite naturally and

directly specified through the language of distinguishers, and not

obviously through the language of tests. In light of this discussion,

the connection between sample-access-OI and multi-calibration

is very interesting: it shows how to reduce a collection of distin-

guishers into a collection of tests, and even more specifically to a

collection of calibration tests.

Algorithmic fairness. Tests are also implicit in the literature on al-

gorithmic fairness, where they are sometimes referred to as auditors.
One line of work, the evidence-based fairness framework—initially

studied in [10, 25, 31]—relates directly to outcome indistinguishabil-

ity and centers around tests that Nature always passes. Broadly, the

framework takes the perspective that, first and foremost, predictors

should reflect the “evidence” at hand—typically specified through

historical outcome data—as well as the statistical and computational

resources allow.

Central to evidence-based fairness is the notion ofmulti-calibration

[25], which was also studied in the context of rankings in [10]. Re-

cently, [26] provide algorithms for achieving an extension of multi-

calibration that ensures calibration of higher moments of a scoring

function, and show how it can be used to provide credible prediction

intervals. [39] study multi-calibration from a sample-complexity

perspective. In a similar vein, [44] study a notion of individualized

calibration and show it can be obtained by randomized forecasters.

Evidence-based fairness is part of a more general paradigm for

defining fairness notions, sometimes referred to as “multi-group”

notions, which has received considerable interest in recent years [4,

10, 25–28, 31, 32, 39]. This approach to fairness aims to strengthen

the guarantees of notoriously-weak group fairness notions, while

maintaining their practical appeal. For instance, [27, 28, 32] give

notions of multi-group fairness based on parity notions studied in

[9] and [23]. [4] extend this idea to the online setting. Other ap-

proaches to fairness adopt a different perspective, and intentionally

audit for properties that Nature does not necessarily pass. Notable

examples are group-based notions of parity [23, 27, 28, 34].

Computational and Statistical Learning. Prediction tasks have

also been studied extensively in the theoretical computer science

and machine learning communities, both in the offline PAC model

[43], as well as in the online model [15, 36]; see [40] and refer-

ences therein. Relatedly, [5] also show a multi-calibration-style

guarantee in the online “sleeping experts” setting. More broadly,

our work is also in conversation with more applied approaches to

learning distributions and generative models including GANs [22]

or auto-encoders [33]. The perspective of generating (statistically)

indistinguishabile samples was also recently considered in a work

introducing the problem of “sample amplification” [1].

Organization. The remainder of the manuscript is structured

as follows. Section 2 defines OI formally and shows a number of

propositions relating the various notions of OI to one another.

Section 3 introduces the notion of prediction indistinguishability,

and investigates the relationship of OI distinguishers to forecasting-

style tests. The formal statements of theorems is deferred to the full

version of the manuscript [11]. There, we include proofs and further

exposition on the connections between the first two levels of the OI

hierarchy to multi-accuracy and multi-calibration, our construction

of OI predictors, establishing the feasibility of the final two levels,

and our construction establishing conditional lower bounds against

the final levels.

2 OUTCOME INDISTINGUISHABILITY
Throughout this work, we study how to obtain predictors that

generate outcomes that cannot be distinguished from natural out-

comes. Specifically, we model Nature as a joint distribution over

individuals and outcomes, denoted D∗
. Individuals come from a

discrete domain X; throughout, we will assume that each 𝑖 ∈ X
can be resolved to some 𝑑-dimensional boolean string 𝑖 ∈ {0, 1}𝑑 ,
which represents the “features” of the individual. In this work, we

focus on boolean outcomes Y = {0, 1}. Thus, D∗
is supported on

X ×Y ⊆ {0, 1}𝑑 × {0, 1}. We use 𝑖 ∼ DX to denote a sample from

Nature’s marginal distribution over individuals.

We say that a predictor is a function 𝑝 : X → [0, 1] that maps

individuals to an estimate of the conditional probability of the

individual’s outcome being 1. For ease of notation, we use 𝑝𝑖 =

𝑝 (𝑖) to denote a predictor’s estimate for individual 𝑖 . Note that the

marginal distribution over individuals DX paired with a predictor

induce a joint distribution over X × Y. Given a predictor 𝑝 , we

use (𝑖, 𝑜𝑖 ) ∼ D(𝑝) to denote an individual-outcome pair, where

𝑖 ∼ DX is sampled from Nature’s distribution over individuals, and

the outcome 𝑜𝑖 ∼ Ber(𝑝𝑖 ) is sampled—conditional on 𝑖—according

to the Bernoulli distribution with parameter 𝑝𝑖 .

With this basic setup in place, we are ready to introduce the

main notion of this work—outcome indistinguishability (OI). Intu-

itively, when developing a prediction model, a natural goal would

be to learn a predictor 𝑝 : X → [0, 1] whose outcomes “look like”

Nature’s distribution D∗
. Outcome indistinguishability formalizes

this intuition, and is parameterized by a family of distinguisher

algorithms A. In the most basic form of OI, each 𝐴 ∈ A receives

as input a labeled sample from one of two distributions, Nature’s

distribution D∗
or the predictor’s distribution D(𝑝).

(𝑖, 𝑜∗𝑖 ) ∼ D∗︸         ︷︷         ︸
Nature’s distribution

(𝑖, 𝑜𝑖 ) ∼ D(𝑝)︸            ︷︷            ︸
Predictor’s distribution

In other words, in each distribution the individual 𝑖 is sampled

according to nature’s marginal distribution on inputs, denoted

𝑖 ∼ DX . The distribution over outcomes, however, varies: con-

ditioned on the individual 𝑖 , the distinguisher either receives the

corresponding natural outcome 𝑜∗
𝑖
, or receives an outcome sampled

as 𝑜𝑖 ∼ Ber(𝑝𝑖 ). In its most basic form, a predictor 𝑝 satisfies OI

over the familyA if for all𝐴 ∈ A, the probability that𝐴 accepts the

sample (𝑖, 𝑜𝑖 ) is (nearly) the same for Nature’s distribution and the

predictor’s distribution. In addition to the sample from D∗
versus

D(𝑝), we can also allow the distinguishers to access the predictor

𝑝 itself. This setup allows us to define a prototype for a notion of

OI.
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Definition 2.1 (Outcome Indistinguishability). Fix Nature’s
distributionD∗. For a class of distinguishersA and Y > 0, a predictor
𝑝 : X → [0, 1] satisfies (A, Y)-outcome indistinguishability (OI) if
for every 𝐴 ∈ A,����� Pr

(𝑖,𝑜∗
𝑖
)∼D∗

[
𝐴(𝑖, 𝑜∗𝑖 ;𝑝) = 1

]
− Pr

(𝑖,𝑜𝑖 )∼D(�̃�)
[ 𝐴(𝑖, 𝑜𝑖 ;𝑝) = 1 ]

����� ≤ Y.

The subsequent sections introduce multiple variants of outcome

indistinguishability, highlighting four distinct access patterns to

𝑝 . By allowing the distinguishers increasingly liberal access to the

predicitve model 𝑝 , the indistinguishability guarantee becomes

increasingly strong.

Remark on nature. We primarily model NatureD∗
as a fixed and

unknown joint distribution over X × Y. The presentation of some

result benefits from an equivalent view, based on the agnostic PAC

framework [24, 29, 30]. In this view, we imagine that individuals

𝑖 ∼ DX are sampled from the marginal distribution over X, and

then Nature selects outcomes conditioned on 𝑖 . Throughout, we will

use 𝑝∗ : X → [0, 1] to denote the function that maps individuals to

the true conditional probability of outcomes given the individual.

That is, for all 𝑖 ∈ X:

𝑝∗𝑖 = Pr
(𝑖,𝑜∗

𝑖
)∼D∗

[
𝑜∗𝑖 = 1

�� 𝑖 ]
.

In our notation, we can imagine that Nature specifies the distribu-

tion over individuals 𝑖 ∼ DX , then specifies the “natural predictor”

𝑝∗ and samples the outcome for an individual 𝑖 as 𝑜∗
𝑖
∼ Ber(𝑝∗

𝑖
); in

other words,D∗ = D(𝑝∗). We emphasize that this view—of Nature

selecting a predictor—is an abstraction that is sometimes instructive

in our analysis of OI. Nevertheless, we make no assumptions about

𝑝∗ other than it defines a valid conditional probability distribution

for each 𝑖 ∈ X. In particular, 𝑝∗ need not come from any realizable

or learnable class of functions.

Expectations and norms. We take expectations over Nature’s

marginal distribution over individuals, possibly conditioned on

membership in particular subpopulations 𝑆 ⊆ X. A simple but

important observation is that for any subpopulation 𝑆 ⊆ X, the

expected outcome is equal to the expectation of 𝑝∗.

Pr
(𝑖,𝑜∗

𝑖
)∼D∗

[
𝑜∗𝑖 = 1

�� 𝑖 ∈ 𝑆
]
= E

𝑖∼DX

[
𝑝∗𝑖

�� 𝑖 ∈ 𝑆
]

Similarly, we may compare predictors over the distribution of in-

dividuals. For any two predictors 𝑝, 𝑝 ′ : X → [0, 1], we use the
following ℓ1-distance to measure the statistical distance between

their outcome distributions D(𝑝) and D(𝑝 ′).𝑝 − 𝑝 ′

1
= E

𝑖∼DX

[ ��𝑝𝑖 − 𝑝 ′𝑖
�� ]

We only use the ∥·∥
1
notation when the distribution on individuals

DX is clear from context.

Supported predictions. In many definitions, we can reason about

predictors as arbitrary functions 𝑝 : X → [0, 1], but to be an effec-

tive definition, we need to discuss functions that are implemented

by a realizable model of computation. Importantly, this means we

will think of predictors as mapping individuals 𝑖 ∈ X to a range of

values 𝑝𝑖 that live on a discrete subset of [0, 1]. We assume for any

predictor 𝑝 : X → [0, 1], the predictor’s support is a discrete set of

values in [0, 1] that receive positive probability over DX . For any
subpopulation 𝑆 ⊆ X, we denote the support of 𝑝 on 𝑆 as

supp𝑆 (𝑝) =
{
𝑣 ∈ [0, 1] : Pr

𝑖∼DX
[ 𝑝𝑖 = 𝑣 | 𝑖 ∈ 𝑆 ] > 0

}
In this way, for any 𝑣 ∈ supp(𝑝), the conditional distribution over

individuals 𝑖 ∼ DX where we condition on the event 𝑝𝑖 = 𝑣 is

well-defined.

When possible, we obtain results agnostic to the exact choice of

discretization. Sometimes, we need to reason about the discretiza-

tion explicitly and map the values of supp(𝑝) onto a known grid

with fixed precision; we introduce additional technical details as

needed in the subsequent sections.

Distinguishers and subpopulations. The notion of outcome in-

distinguishability is parameterized by a family of distinguishing

algorithms, which we denote as A. To instantiate a concrete no-

tion of OI (at any of the four levels we define), we must specify A
within a fixed realizable model of computation. In practice, it may

make sense to use a class of learning-theoretic distinguishers, (e.g.,

decision-trees, halfspaces, neural networks). In this work, we focus

on more abstract models of distinguishers. When our proofs allow,

we will treatA as an arbitrary class of computations, but for certain

results, it will be easier to assume something about the model of

computation in which 𝐴 ∈ A are implemented (e.g., time-bounded

uniform, size-bounded non-uniform).

Recall, we assume the domain of individuals X ⊆ {0, 1}𝑑 can be

represented as 𝑑-dimensional boolean vectors for 𝑑 ∈ N, and that

the distinguishing algorithms 𝐴 ∈ A take as input an individual

𝑖 ∈ X and an outcome 𝑜𝑖 ∈ {0, 1}. Often, we will think of the

dimension 𝑑 as fixed. In this case, we can think ofA as a fixed class

of distinguishers of concrete complexity: for example, if the class

A is implemented by circuits, then we can reason about their size

as 𝑠 (𝑑) = 𝑠 for some fixed 𝑠 ∈ N. When we think of the dimension

as growing, then we need to consider ensembles of distinguishing

families, where the family is parameterized by 𝑑 ∈ N.
The same issues arise when we discuss multi-calibration, which

is parameterized by a collection of “efficiently-identifiable” subpop-

ulations C ⊆ {0, 1}X . Here, efficiently-identifiable refers to the fact

that we assume for each 𝑆 ∈ C, there exists some efficient computa-

tional model that given 𝑖 ∈ X, can compute the predicate 1 [ 𝑖 ∈ 𝑆 ]
(i.e., the characteristic function of 𝑆). Again, whenever possible, our

treatment does not depend on the exact model of computation.

Circuits. As suggested above, some results are most naturally

stated with a concrete model of computation in mind. In these cases,

we will describe the distinguishers and subpopulations as computed

by a collection of circuits. Fixing such a model of circuits will be

useful when relating the complexity of a class of distinguishers A
to that of a class of subpopulations C, as well as showing the feasi-

bility of obtaining circuits that implement OI predictors. Analogous

results could be proved instead for uniform classes.

Throughout, we say that a family of distinguishers A (resp.,

subpopulations C) for X ⊆ {0, 1}𝑑 is implemented by a family of

circuits of size 𝑠 (𝑑), if for each 𝐴 ∈ A (resp., 𝑆 ∈ C), there exists
a bounded fan-in circuit over the complete boolean basis 𝑐𝐴 that

computes the distinguisher 𝐴 on all inputs, with at most 𝑠 (𝑑) gates
(or equivalently, by bounded fan-in, Θ(𝑠 (𝑑)) wires).
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Specifying themodel of computation for themost stringent levels

of OI requires some care. The third level—oracle-access-OI—allows

the distinguishers oracle-access to the predictor in question. For

each 𝐴 ∈ A, we denote the oracle distinguisher as 𝐴�̃�
, which has

random access to 𝑝𝑖 for any 𝑖 ∈ X. The fourth level—code-access-

OI—allows the distinguishers direct access to the description of the

predictor in question, denoted ⟨𝑝⟩. In this case, it makes sense to

allow the ensemble of distinguishers to be parameterized by the

length of the description 𝑛 = |⟨𝑝⟩| in addition to the dimension 𝑑 .

We discuss the specific assumptions about the implementation of

these notions in subsequent sections.

2.1 Defining the Levels of Outcome
Indistinguishability

With the general framework and preliminaries in place, we are ready

to define the various levels of outcome indistinguishability. In this

section, we focus on the definitions of each notion—no-access-OI,

sample-access-OI, oracle-access-OI, and code-access-OI. Along the

way, we show some relations between the notions, but defer most

of our investigation of the notions to subsequent sections. We begin

introducing each notion in the single-sample setting, and discuss

OI for distinguishers that receive multiple samples in Section 2.2.

2.1.1 No-Access-OI. The weakest model of distinguisher receives

no direct access to the predictive model 𝑝 , and must make its judg-

ments based only on the observed sample. In this framework, the

only access to the predictor is indirect, through the sampled out-

comes.

Definition 2.2 (No-Access-OI). Fix Nature’s distribution D∗.
Let Z = X × {0, 1}. For a class of distinguishers A ⊆ {Z → {0, 1}}
and Y > 0, a predictor 𝑝 : X → [0, 1] is (A, Y)-no-access-OI if for
every 𝐴 ∈ A,����� Pr

(𝑖,𝑜∗
𝑖
)∼D∗

[
𝐴(𝑖, 𝑜∗𝑖 ) = 1

]
− Pr

(𝑖,𝑜𝑖 )∼D(�̃�)
[ 𝐴(𝑖, 𝑜𝑖 ) = 1 ]

����� ≤ Y.

We remark that from a statistical perspective, no-access-OI al-

ready defines a strong framework for indistinguishability. Even at

this baseline level, if we allow a computationally-inefficient class

of distinguishers, no-access-OI can be used to require closeness

in statistical distance. For instance, consider a family of “subset”

distinguishers, where for a subset 𝑆 ⊆ X, the distinguisher 𝐴𝑆 is

defined as follows.

𝐴𝑆 (𝑖, 𝑜𝑖 ) =
{
𝑜𝑖 if 𝑖 ∈ 𝑆

0 o.w.

If we take A = {𝐴𝑆 : 𝑆 ⊆ X} to be the family of all subset dis-

tinguishers, then the only predictors 𝑝 that satisfy no-access-OI

will be statistically close to Nature’s predictor 𝑝∗. Of course, this
class of distinguishers includes inefficient tests (necessary to certify

∥𝑝∗ − 𝑝 ∥
1
is small). Our interest will be on the guarantees afforded

by OI when we take A to be a class of efficient distinguishers.

2.1.2 Sample-Access-OI. To strengthen the distinguishing power,

we define sample-access-OI, which allows distinguishers to observe

the prediction for the individual in question. Specifically, in ad-

dition to the sampled individual 𝑖 ∼ D and outcome 𝑜𝑖 (drawn

according to nature or the predictor 𝑝), the distinguisher receives

the prediction 𝑝𝑖 .

Definition 2.3 (Sample-Access-OI). Fix Nature’s distribution
D∗. Let Z = X × {0, 1} × [0, 1]. For a class of distinguishers A ⊆
{Z → {0, 1}} and Y > 0, a predictor 𝑝 : X → [0, 1] is (A, Y)-sample-
access-OI if for every 𝐴 ∈ A,����� Pr
(𝑖,𝑜∗

𝑖
)∼D∗

[
𝐴(𝑖, 𝑜∗𝑖 , 𝑝𝑖 ) = 1

]
− Pr

(𝑖,𝑜𝑖 )∼D(�̃�)
[ 𝐴(𝑖, 𝑜𝑖 , 𝑝𝑖 ) = 1 ]

����� ≤ Y.

Sample-access-OI is a strengthening of no-access-OI: for any

no-access-OI distinguisher, on input (𝑖, 𝑜𝑖 , 𝑝𝑖 ), a sample-access-OI

distinguisher can simply ignore the prediction 𝑝𝑖 , and simulate the

original no-access-OI distinguisher.

2.1.3 Oracle-Access-OI. The next strengthening of OI allows dis-
tinguishers to make queries to 𝑝 , not just on the sampled individual

𝑖 ∼ D, but also on any other 𝑗 ∈ X. Such a query model needs to

be formalized; at a high level, we assume the distinguishers in the

class 𝐴 ∈ A are augmented with oracle access to 𝑝 , denoted as 𝐴�̃�
.

Definition 2.4 (Oracle-Access-OI). Fix Nature’s distribution
D∗. Let Z = X × {0, 1}. For a class of oracle distinguishers A ⊆
{Z → {0, 1}} and Y > 0, a predictor 𝑝 : X → [0, 1] is (A, Y)-oracle-
access-OI if for every 𝐴�̃� ∈ A,����� Pr

(𝑖,𝑜∗
𝑖
)∼D∗

[
𝐴�̃� (𝑖, 𝑜∗𝑖 ) = 1

]
− Pr

(𝑖,𝑜𝑖 )∼D(�̃�)

[
𝐴�̃� (𝑖, 𝑜𝑖 ) = 1

] ����� ≤ Y.

The exact formulation of such oracle distinguishers will vary

based on the model of computation in whichA is defined. Indepen-

dent of the exact model, oracle-access-OI can implement sample-

access-OI: on input (𝑖, 𝑜𝑖 ), the oracle-access-OI distinguisher can
access 𝑝𝑖 using a single query and then simulate the sample-access-

OI distinguisher.

Lunchtime-OI and Sample-Access-OI.. Oracle-access-OI generally
defines a stronger notion of indistinguishability than sample-access-

OI, but we show that if the oracle-access-OI distinguishers are non-

adaptive—asking only pre-processing queries—then they can be

simulated by a family of (non-uniform) sample-access-OI distin-

guishers. This result demonstrates that the power of oracle-access

distinguishers over sample-access distinguishers derives from the

ability to query 𝑝 adaptively, based on the sample in question. In

particular, we show that oracle-access-OI is strictly more powerful

than sample-access-OI. The construction follows by exploiting cor-

relations within D∗
across different 𝑖, 𝑗 ∈ X, which can be tested

efficiently by querying 𝑝 adaptively.

In fact, this collapse from oracle-access-OI to sample-access-OI

will hold for an even more powerful class of distinguishers, which

are allowed “lunchtime attack” style pre-processing on 𝑝 . Consider

the following model of pre-processing analysis. For some 𝑡 ∈ N,
given a family of distinguishers A, suppose that for each 𝐴 ∈ A,

there exists a pre-processing algorithm 𝑅
�̃�

𝐴
: 1

𝑑 → {0, 1}𝑡 with

oracle access to 𝑝 . Given access to 𝑝 for input domain X ⊆ {0, 1}𝑑 ,
the pre-processing algorithm 𝑅

�̃�

𝐴
(1𝑑 ) produces an advice string 𝑎 ∈

{0, 1}𝑡 . Then, oracle access to 𝑝 is revoked, and the distinguisher 𝐴

receives a individual-outcome-prediction sample (𝑖, 𝑜𝑖 , 𝑝𝑖 ) from one
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of the two distributions, given access to 𝑎.8 That is, the lunchtime

variant of (A, Y)-oracle-access-OI holds if for every 𝐴 ∈ A and

𝑎 = 𝑅
�̃�

𝐴
(1𝑑 ),����� Pr

(𝑖,𝑜∗
𝑖
)∼D∗

[
𝐴𝑎 (𝑖, 𝑜∗𝑖 , 𝑝𝑖 ) = 1

]
− Pr

(𝑖,𝑜𝑖 )∼D(�̃�)

[
𝐴𝑎 (𝑖, 𝑜𝑖 , 𝑝𝑖 ) = 1

] ����� ≤ Y.

Note that computing 𝑅
�̃�

𝐴
(1𝑑 ) need not be efficient, but importantly,

its analysis of 𝑝 must be summarized into 𝑡 bits. For this variant of

oracle-access-OI, we show the following inclusion.

Proposition 2.5. Fix Nature’s distribution D∗. Let Z = X ×
{0, 1} × [0, 1]. Suppose A ⊆ {Z → {0, 1}} is a class of lunchtime
distinguishers implemented by size-𝑠 circuits. Then, there exists a class
of sample-access distinguishers A ′ implemented by size-𝑠 circuits,
such that any predictor 𝑝 : X → [0, 1] that satisfies (A ′, Y)-sample-
access-OI must also satisfy (A, Y)-oracle-access-OI.

Proof. Given a class of lunchtime distinguishers A, we define

a new class A ′
of sample-access distinguishers as follows.

A ′ =
{
𝐴′
𝑎 : 𝐴 ∈ A, 𝑎 ∈ {0, 1}𝑡

}
where 𝐴′

𝑎 is defined as

𝐴′
𝑎 (𝑖, 𝑜𝑖 , 𝑝𝑖 ) = 𝐴𝑎 (𝑖, 𝑜𝑖 , 𝑝𝑖 )

for all 𝑖 ∈ X and 𝑜𝑖 ∈ {0, 1} and 𝑝𝑖 ∈ [0, 1]. In other words, for

each 𝐴 ∈ A, we introduce 2
𝑡
fixed distinguishers that have the

possible output of 𝑅
�̃�

𝐴
(1𝑑 ) hard-coded. If 𝐴 is implemented by a

circuit with access to the advice string output by 𝑅
�̃�

𝐴
(1𝑑 ), then for

any 𝑎 ∈ {0, 1}𝑡 , 𝐴′
𝑎 can be implemented by circuits with the same

number of wires. We argue that (A ′, Y)-sample-access-OI implies

(A, Y)-oracle-access-OI.
Suppose there is some 𝐴 ∈ A such that 𝐴𝑎

distinguishes be-

tween the natural and modeled distribution. Then, by construction,

there exists some 𝐴′
𝑎 ∈ A ′

that also distinguishes the distributions

with the same advantage. Thus, by contrapositive, if a predictor

𝑝 satisfies (A ′, Y)-sample-access-OI, then it also satisfies (A, Y)-
oracle-access-OI. □

Note that we state and prove Proposition 2.5 for distinguishers

implemented by circuits, but the construction is quite generic. This

style of hard-coding works very naturally for any non-uniform class

model of distinguishers. Even if we work with a uniform model of

distinguishers, if the length of the advice string 𝑡 ∈ N is a constant

(independent of 𝑑 the dimension of individuals X), then for each

𝐴 ∈ A we can define a TM that has 𝑎 ∈ {0, 1}𝑡 hard-coded as part

of its description. The number of distinguishers in A ′
grows by a

factor of 2
𝑡
.

2.1.4 Code-Access-OI. The strongest notion of distinguishers we

consider receive—as part of their input—the description ⟨𝑝⟩ of a
circuit that computes 𝑝 . In this model, which we call code-access-

OI, the distinguishers can accept or reject their sample based on

nontrivial analysis of the circuit computing 𝑝 , not just its evaluation

on domain elements. We assume that |⟨𝑝⟩| = 𝑛 for some 𝑛 ∈ N.
8
Note that, as in sample-access-OI, we additionally give �̃�𝑖 as input to the lunchtime

distinguisher. We exclude the prediction �̃�𝑖 as input in Definition 2.4 because, in

general, an adaptive oracle-access-OI distinguisher can query �̃�𝑖 as desired. Without

feeding the prediction as input, lunchtime-OI actually collapses to no-access-OI.

Definition 2.6 (Code-Access-OI). Fix Nature’s distribution D∗.
Let 𝑍 = X × {0, 1} × {0, 1}𝑛 for 𝑛 ∈ N. For a class of distinguishers
A ⊆ {Z → {0, 1}} and Y > 0, a predictor 𝑝 : X → [0, 1] is (A, Y)-
code-access-OI if for every 𝐴 ∈ A,����� Pr
(𝑖,𝑜∗

𝑖
)∼D∗

[
𝐴(𝑖, 𝑜∗𝑖 , ⟨𝑝⟩) = 1

]
− Pr

(𝑖,𝑜𝑖 )∼D(�̃�)
[ 𝐴(𝑖, 𝑜𝑖 , ⟨𝑝⟩) = 1 ]

����� ≤ Y.

There are a number of subtle technicalities in howwe define code-

access-OI, relating to how we encode ⟨𝑝⟩. In particular, if we want

to be able to simulate the prior notions of OI within code-access-OI,

then we need to allow the complexity of the distinguishers in A
to scale with the complexity of 𝑝 . Even evaluating 𝑝 on a single

domain element requires that A can compute circuit evaluation.

This technicality sets code-access-OI apart from the prior notions,

where it sufficed to think of the domain as fixed in dimension, and

thus think of the distinguishers’ complexity as fixed as well.

2.2 Multiple Sample OI
Throughout this work, we focus on distinguishers that receive a

single sample from nature or the modeled distribution, with vary-

ing levels of access to 𝑝 . A natural generalization of this model

allows distinguishers to access multiple samples. We define the

generic variant as follows (where each of no-access-OI, sample-

access-OI, oracle-access-OI, and code-access-OI follow by allowing

distinguishers the analogous degree of access to 𝑝).

Definition 2.7. Fix Nature’s distribution D∗. Let 𝑚 ∈ N and
Z = (X × {0, 1}). For a class of multi-sample distinguishers A𝑚 ⊆
{Z𝑚 → {0, 1}} and Y > 0, a predictor 𝑝 : X → [0, 1] is (A𝑚, Y)-OI
if for every 𝐴𝑚 ∈ A𝑚 ,����� Pr

(𝑖1,𝑜∗𝑖
1

),...,(𝑖𝑚,𝑜∗
𝑖𝑚

)∼(D∗)𝑚

[
𝐴𝑚

(
(𝑖1, 𝑜∗𝑖1 ), . . . , (𝑖𝑚, 𝑜∗𝑖𝑚 )

)
= 1

]
− Pr
(𝑖1,𝑜𝑖

1
),...,(𝑖𝑚,𝑜𝑖𝑚 )∼D(�̃�)𝑚

[
𝐴𝑚

(
(𝑖1, 𝑜𝑖1 ), . . . , (𝑖𝑚, 𝑜𝑖𝑚 )

)
= 1

] ����� ≤ Y.

We leave full exploration of multi-sample-OI to future work, but

make the following observation. If the class of distinguishers we use

admits a hybrid argument, then the multi-sample distinguishers’

advantage can be bounded generically in terms of the single-sample

advantage. As an example, we show the following proposition for

oracle-access-OI.

Proposition 2.8. Fix Nature’s distributionD∗. LetA be the class
of size-𝑠 single-sample distinguishers, and for 𝑚 ∈ N let A𝑚 be
the class of size-𝑠 𝑚-sample distinguishers. Suppose we allow A pre-
processing samples from D∗ and oracle-access to 𝑝 . For Y > 0, if
a predictor 𝑝 : X → [0, 1] is (A, Y/𝑚)-oracle-access-OI, then it is
(A𝑚, Y)-oracle-access-OI.

Proof. Suppose there exists some𝑚-sample distinguisher𝐴𝑚 ∈
A𝑚 that distinguishes between nature and the model 𝑝 with ad-

vantage at least Y. We show that there is a single-sample random-

ized distinguisher 𝐴 ∈ A that distinguishes between nature and

the model with advantage at least Y/𝑚. By contrapositive, if 𝑝 is

(A, Y/𝑚)-oracle-access-OI, then it must be (A𝑚, Y)-oracle-access-
OI.
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Consider the following sequence of hybrid distributions over𝑚

samples, (𝑖1, 𝑜𝑖1 ), . . . , (𝑖𝑚, 𝑜𝑖𝑚 ), where D𝑘 = (D∗)𝑚−𝑘 × D(𝑝)𝑘 is

a product distribution of𝑚 − 𝑘 independent samples from nature

and 𝑘 samples from the model. Note that assuming pre-processing

access to samples from D∗
and oracle access to 𝑝 , each D𝑘 is

sampleable. Specifically, to obtain a sample from D𝑘 , we will draw

𝑚 samples from D∗
, and then for each 𝑗 ∈ {𝑚 − 𝑘 + 1, . . . ,𝑚}, we

resample the outcome by evaluating 𝑝𝑖 𝑗 and then randomly drawing

𝑜𝑖 𝑗 ∼ Ber(𝑝𝑖 𝑗 ).
Observing that D0 = (D∗)𝑚 and D𝑚 = D(𝑝)𝑚 , we can write

the distinguishing probability of 𝐴𝑚 as a telescoping sum over

distinguishing probabilities over the hybrid distributions.

Pr
(𝑖1,𝑜∗𝑖

1

),...,(𝑖𝑚,𝑜∗
𝑖𝑚

)∼(D∗)𝑚

[
𝐴
�̃�
𝑚

(
(𝑖1, 𝑜∗𝑖1 ), . . . , (𝑖𝑚, 𝑜∗𝑖𝑚 )

)
= 1

]
− Pr

(𝑖1,𝑜𝑖
1
),...,(𝑖𝑚,𝑜𝑖𝑚 )∼D(�̃�)𝑚

[
𝐴
�̃�
𝑚

(
(𝑖1, 𝑜𝑖1 ), . . . , (𝑖𝑚, 𝑜𝑖𝑚 )

)
= 1

]

=

𝑚∑
𝑗=1

(
Pr

(𝐼 ,𝑂)∼D𝑗−1

[
𝐴
�̃�
𝑚 (𝐼 ,𝑂) = 1

]
− Pr

(𝐼 ,𝑂)∼D𝑗

[
𝐴
�̃�
𝑚 (𝐼 ,𝑂) = 1

] )
≥ Y

Thus, the following randomized single-sample oracle-access-OI dis-

tinguisher succeeds with advantage at least Y/𝑚: as pre-processing,

sample a random index 𝑗 ∼ [𝑚] and draw a sample from the hybrid

distribution D𝑗 ; on input (𝑖, 𝑜𝑖 ), replace the 𝑗th sample with the

input (𝑖, 𝑜𝑖 ), and run 𝐴𝑚 on the resulting𝑚-sample input. If the

input is drawn from nature, then the resulting sample is drawn from

D𝑗−1, whereas if the input is from the model, then the resulting

sample is drawn from D𝑗 . Thus, the distinguishing advantage of 𝐴

is the average distinguishing advantage between D𝑗−1 and D𝑗 , or

Y/𝑚. □

We state Proposition 2.8 for oracle-access-OI (and thus, by sim-

ulation, code-access-OI), due to the ease of running the hybrid

argument with oracle access to 𝑝 . Note that we use circuit-size as

the complexity measure for concreteness, but the argument will go

through for most complexity measures of A𝑚 . Similar hybrid argu-

ments can also be made for no-access-OI and sample-access-OI, pro-

vided the model of computation of the distinguishers admits “hard-

coding” the outcome values

{
𝑜𝑖𝑚−𝑘+1 , . . . , 𝑜𝑖𝑚

}
, and

{
𝑝𝑖1 , . . . , 𝑝𝑖𝑚−𝑘

}
if needed (for sample-access-OI). In particular, for any non-uniform

class of multi-sample distinguishers A, there exists a class A ′
of

single-sample distinguishers that simulates the distinguishers in A
with the choices hard-coded.

3 PREDICTION INDISTINGUISHABILITY
We turn our attention to an idealized notion of indistinguishability,

which we refer to as prediction indistinguishability (PI). Distin-

guishers receive as input an individual-outcome pair (𝑖, 𝑜∗
𝑖
) ∼ D∗

from Nature’s distribution, and either Nature’s prediction 𝑝∗
𝑖
or the

model’s estimate of the parameter 𝑝𝑖 . We show that achieving PI

may require learning Nature’s predictor 𝑝∗ very precisely, even

when A is a very simple class of distinguishers. This result shows

that PI is generally infeasible due to the ability to access 𝑝∗
𝑖
directly:

even computationally-weak PI distinguishers are incredibly power-

ful at distinguishing between 𝑝∗ and 𝑝 . In a sense, the hardness of

PI motivates our focus on OI.

Statistical closeness through PI.. Prediction indistinguishability

requires that the joint distribution of such individual-outcome-

prediction triples cannot be significantly distinguished by a family

of algorithms A.

Definition 3.1 (Prediction Indistinguishability). Fix Na-
ture’s distribution D∗. Let Z = X × {0, 1} × [0, 1]. For a class of
distinguishers A : Z → [0, 1] and Y > 0, a predictor 𝑝 : X → [0, 1]
satisfies (A, Y)-Prediction Indistinguishability (PI) if for every𝐴 ∈ A,����� Pr

(𝑖,𝑜∗
𝑖
)∼D∗

[
𝐴(𝑖, 𝑜∗𝑖 , 𝑝

∗
𝑖 ) = 1

]
− Pr

(𝑖,𝑜∗
𝑖
)∼D∗

[
𝐴(𝑖, 𝑜∗𝑖 , 𝑝𝑖 ) = 1

] ����� ≤ Y.

We emphasize that prediction indistinguishability departs from

outcome indistinguishability in an essential way, by assuming the

distinguisher may receive direct access to Nature’s prediction 𝑝∗
𝑖
.
9

We show that prediction indistinguishability is too strong a no-

tion of indistinguishability to be broadly useful. Specifically, we

show that using a very simple distinguisher, we can test for sta-

tistical closeness between nature’s predictor 𝑝∗ and the model’s

predictor 𝑝 . Given the hardness of recovering individual-level pre-

dictions in statistical distance (both information-theoretic and com-

putational), this reduction allows us to conclude that, in general,

prediction indistinguishability is infeasible.

Consider the randomized distinguisher 𝐴ℓ1 defined as follows.

𝐴ℓ1 (𝑖, 𝑜𝑖 , 𝑝𝑖 ) =
{
0 w.p. |𝑜𝑖 − 𝑝𝑖 |
1 o.w.

We argue that if a candidate 𝑝 passes this single PI-distinguisher, it

must have small statistical distance to 𝑝∗.

Proposition 3.2. Fix Nature’s distributionD∗ and constant Y, 𝜏 ≥
0; suppose Nature’s predictor 𝑝∗ : X → [0, 1] is such that 𝑝∗ =

𝑓 + 𝛿 for a boolean function 𝑓 : X → {0, 1} and 𝛿 : X → [−1, 1]
where ∥𝛿 ∥

1
≤ 𝜏 . Then any (

{
𝐴ℓ1

}
, Y)-PI predictor 𝑝 : X → [0, 1] is

statistically close to 𝑝∗, satisfying𝑝∗ − 𝑝

1
≤ 4𝜏 + Y.

Proof. Consider the difference in probabilities of acceptance

under that natural and modeled distributions.

Pr
(𝑖,𝑜∗

𝑖
)∼D∗

[
𝐴ℓ1 (𝑖, 𝑜∗𝑖 , 𝑝

∗
𝑖 ) = 1

]
− Pr

(𝑖,𝑜∗
𝑖
)∼D∗

[
𝐴ℓ1 (𝑖, 𝑜∗𝑖 , 𝑝𝑖 ) = 1

]
= E

𝑖∼DX

[
𝑝∗𝑖 · (𝑝∗𝑖 − 𝑝𝑖 ) + (1 − 𝑝∗𝑖 ) · (𝑝𝑖 − 𝑝∗𝑖 )

]
(1)

Assuming that 𝑝 is (
{
𝐴ℓ1

}
, Y)-PI, we can upper bound this quantity

by Y. Under the assumption that 𝑝∗ = 𝑓 + 𝛿 for boolean 𝑓 , we will

9
The assumption that 𝑝∗

meaningfully exists such that 𝑝∗
𝑖 can be given as input to

a distinguisher breaks the abstraction of D∗
, but is a common assumption in the

forecasting literature. Still, this is another sense in which PI is an idealized variant of

OI, because we can never actually generate individual-outcome-prediction samples

from D∗
.
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lower bound the quantity in terms of ∥𝑝∗ − 𝑝 ∥ and 𝜏 .

= E
𝑖∼DX

[ (𝑓𝑖 + 𝛿𝑖 ) · (𝑓𝑖 + 𝛿𝑖 − 𝑝𝑖 ) + (1 − 𝑓𝑖 − 𝛿𝑖 ) · (𝑝𝑖 − 𝑓𝑖 − 𝛿𝑖 ) ]

≥ E
𝑖∼DX

[ 𝑓𝑖 · (𝑓𝑖 − 𝑝𝑖 ) + (1 − 𝑓𝑖 ) · (𝑝𝑖 − 𝑓𝑖 ) ] − 3 ∥𝛿 ∥
1

= E
𝑖∼DX

[ |𝑓𝑖 − 𝑝𝑖 | ] − 3 ∥𝛿 ∥
1

≥
𝑝∗ − 𝑝


1
+ 4𝜏

Thus, in combination, we can conclude ∥𝑝∗ − 𝑝 ∥
1
− 4𝜏 ≤ (1) ≤ Y

and the proposition follows. □

We can therefore port any hardness results for recovering 𝑝∗

in statistical distance to obtaining prediction indistinguishability.

For example, if we take 𝑝∗ to be a random boolean function, then

ℓ1-recovery is information-theoretically impossible unless we ob-

serve the outcome 𝑜∗
𝑖
for a 1 − 𝑂 (Y) fraction of inputs 𝑖 ∈ X. If

we restrict ourselves to relatively simple functions, ℓ1-recovery

may be information-theoretically feasible, but computationally in-

feasible: for instance, if 𝑝∗ is a pseudorandom function, then any

computationally-efficient estimate of 𝑝 will fail (
{
𝐴ℓ1

}
, Y)-PI.
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