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Abstract
We identify and explore connections between the recent literature on multi-group fairness for pre-
diction algorithms and the pseudorandomness notions of leakage-resilience and graph regularity.
We frame our investigation using new variants of multicalibration based on statistical distance and
closely related to the concept of outcome indistinguishability. Adopting this perspective leads us
not only to new, more efficient algorithms for multicalibration, but also to our graph theoretic results
and a proof of a novel hardcore lemma for real-valued functions.
Keywords: Fairness, calibration, pseudorandomness, regularity, weak regularity, leakage resilience

1. Introduction

A central question in the field of algorithmic fairness concerns the extent to which prediction algo-
rithms, which assign numeric “probabilities” to individuals in a population, systematically mistreat
members of large demographic subpopulations. Although interest in group fairness is far from
new Turini (2008); Kamiran and Calders (2009), the study of multi-group fairness, originally con-
ceived as a bridge between individual fairness Dwork et al. (2012) and group fairness notions and
in which the subpopulations of interest are numerous and overlapping, is relatively young, initiated
by the seminal works of Hébert-Johnson et al. (2018); Kearns et al. (2018). In the past few years,
a fruitful line of research has investigated how to achieve various notions of multi-group fairness
and their applications to learning e.g., Gopalan et al. (2022a); Kim et al. (2022); Deng et al. (2023);
Gopalan et al. (2022b); Jung et al. (2021); Gupta et al. (2022). In this work, complementing the
work of Casacuberta et al. (2023), we excavate a deep connection between multi-group fairness
and pseudorandomness, and exhibit a productive relationship between the key concept of multi-
calibration introduced in Hébert-Johnson et al. (2018), and notions of leakage simulation Jetchev
and Pietrzak (2014), graph regularity Szemerédi (1975); Frieze and Kannan (1996), and hardcore
lemmas Impagliazzo (1995), drawing particular inspiration from Trevisan et al. (2009); Chen et al.
(2018).
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A New Definition. Speaking informally, multicalibration requires that predictions be calibrated
simultaneously on each member c of a pre-specified collection C of arbitrarily intersecting popu-
lation groups, the intuition being that a score of v “means the same thing” independent of one’s
group membership(s) Kleinberg et al. (2016). We begin with a new variant of the definition of mul-
ticalibration that draws on the indistinguishability-based point of view of Dwork et al. (2021) and
generalizes prior definitions along several axes. Consider a distribution D on individual-outcome
pairs (i, o∗i ) for individuals i ∈ X and their associated real-world outcomes o∗i , and a collection C
of functions capturing intersecting subpopulations in the fairness-based view and distinguishers in
the outcome-indistinguishabilty framework. Letting p∗ denote the real-world outcome distribution,
where o∗i ∼ Ber(p∗i ), the goal of a predictor p̃ is to provide outcome distributions p̃i, for i ∈ X ,
in a way that cannot be distinguished from p∗ by the distinguishers. Unlike in previous work, our
definition of multicalibration is in terms of statistical distance, requiring that for all c ∈ C,

(c(i), õi, p̃i) and (c(i), o∗i , p̃i) are ε-statistically close, where (i, o∗i )← D and õi ∼ Ber(p̃i).

(See Section 3 for a formal treatment.) Our definition naturally accommodates outcomes o∗i ∈ O
for an arbitrary set O of possible outcomes, as well as functions c : X → Y with arbitrary ranges.
A weaker variant of our definition corresponds to multiaccuracy Hébert-Johnson et al. (2018); Kim
et al. (2019) and equivalently no-access outcome indistinguishability Dwork et al. (2021) and the
approximation notion in Theorem 1.1 of Trevisan et al. (2009), which in the group-fairness view
only requires the predictor be accurate in expectation (rather than calibrated) on each group simul-
taneously. We also describe a stronger variant called strict multicalibration, which is closely related
to the notion of “swap” multicalibration that was independently proposed by the concurrent work
of Gopalan et al. (2023b). The strong statistical distance condition in our definitions lends itself
naturally to applications and gives a strikingly simple proof of the observation, due to Gopalan et al.
(2023a,b), that omniprediction Gopalan et al. (2022a) can be achieved from multiaccuracy and over-
all calibration1, as well as a generalization of omniprediction to new settings. These new settings
include the multi-objective learning problem studied in Haghtalab et al. (2023), where the goal is
to achieve strong performance not only across multiple loss functions but also across shifts in the
underlying distribution over X .

From Pseudorandomness to Fairness. The leakage simulation lemma Jetchev and Pietrzak (2014)
is a cryptographic result concerning when a few bits of auxiliary input regarding a secret can be
“faked,” and therefore pose no threat to secrecy. Translating to our setting, in the simplest case
there is a single bit of “auxiliary” input and this corresponds to o∗i ∼ Ber(p∗i ) or õi ∼ Ber(p̃i),
where again p∗i is the true distribution from which individual i’s outcome is chosen and p̃i is the
distribution proposed by the predictor. The lemma provides a construction for creating a simulator
that outputs “fake” bits that fool any function in a family F of distinguishers that receive (i, o∗i ) or
(i, õi), and is a strengthening of a conceptually similar result in Trevisan et al. (2009). The simulator
is a simple combination of only a small number of functions in F .

Upon inspection, multiaccuracy is a “moral equivalent” to leakage simulation. Armed with this
observation, we leverage a lower bound on the size of leakage simulators Chen et al. (2018) to
obtain the first relative lower bound on the size of multiaccurate predictors, refuting the possibility
of having “dream” predictors that are more efficient than functions in C. In other words, there is

1. An omnipredictor allows post-processing to obtain best-in-class (with respect to C) loss with respect to any loss
function in a rich set.
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nothing analogous to a pseudorandom generator, i.e., no small predictor p̃ can fool all polynomial-
sized distinguishers.

Inspired by the specific leakage simulation algorithm of Chen et al. (2018), we next construct
a general framework for multicalibration algorithms using no-regret learning. A particular instanti-
ation of the framework results in a set of new algorithms with improved sample complexity in the
multiclass and low-degree settings recently introduced by Gopalan et al. (2022b)2.

Specifically, when C ⊆ {0, 1}X is the collection of demographic subpopulations and there are
ℓ≫ 2 possible outcomes for each member of the population, our algorithm in Section 5 needs only
log |C| + (1/ε)ℓ samples to achieve (C, O(ε))-multicalibration, ignoring factors of (ℓ/ε)O(1). In
contrast, the previous best upper bound of Gopalan et al. (2022b) required log |C| × (ℓ/ε)4ℓ, again
ignoring factors of (ℓ/ε)O(1).3 In particular, in our sample complexity, the log |C| term is additive
and the dependence on ℓ is simply exp(ℓ). Similarly, for degree-k multicalibration our algorithm
uses Θ

(
(log |C|+ k log(ℓ/ε))ε−4 × log(ℓ)

)
samples, yielding an exponential improvement on the

dependence in ℓ over the bound in Gopalan et al. (2022b) of Θ
(
(log |C|+ k log(ℓ/ε))ε−4 × ℓ

)
.

From Fairness Back to Pseudorandomness We find a tantalizing parallel between multicali-
bration and the Szemerédi regularity lemma from extremal graph theory, which decomposes large
dense graphs into parts that behave pseudorandomly Szemerédi (1975). We show in Theorem 19
that for an appropriate graph-based instantiation of the multi-group fairness framework, there is a
tight correpondence between predictors satisfying strict multicalibration and Szemerédi regularity
partitions of the underlying graph. Our theorem can be viewed as an extension of a result of Trevisan
et al. (2009) that established an anlogous link between multiaccuracy and the Frieze-Kannan weak
regularity lemma Frieze and Kannan (1996). It also builds on the work of Skorski (2017), which
showed that the criteria of Szemerédi regularity can be phrased in terms of distinguishers—our work
further shows that these distinguishers have the structure of tests for strict multicalibration with re-
spect to an appropriate collection C. Finally, by considering the standard notion of multicalibration,
which is more demanding than multiaccuracy but less so than strict multicalibration, our analogy
naturally leads us at a new notion of graph regularity situated between Frieze-Kannan regularity and
Szemerédi regularity that we call intermediate regularity, which may be of independent interest.

The regularity lemma of Trevisan, Tulsiani, and Vadhan yields important implications in differ-
ent areas, including the weak Szemerédi regularity lemma in graph theory, Impagliazzo’s Hardcore
Lemma in complexity theory Impagliazzo (1995), the Dense Model Theorem in additive combina-
torics Impagliazzo (2009); Reingold et al. (2008), computational analogues of entropy in informa-
tion theory Vadhan and Zheng (2012, 2013); Zheng (2014), and weaker notions of zero-knowledge
in cryptography Chung et al. (2015). Capitalizing on the increased strength of multicalibration over
multiaccuracy, applying our multicalibration algorithm we derive a version of the hardcore lemma
for bounded real-valued functions with respect to natural notions of hardness and pseudorandom-
ness4.

2. Gopalan et al. (2022b) defines a hierarchy of relaxations of multicalibration in which the kth level (“degree k”)
constrains the first k moments of the predictor, conditioned on subpopulations in C, and demonstrates that some
properties of multicalibration related to fairness and accuracy manifest as low-degree properties.

3. Gopalan et al. (2022b) reports sample complexity in terms of VC(C), which could be as large as log(|C|).
4. In concurrent work also capitalizing on the strength of multicalibration as a starting point, Casacuberta et al. (2023)

obtains stronger and more general versions of the Hardcore Lemma, Dense Model Theorem, and characterizations of
pseudo-average min-entropy.
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Organization In Section 2, we formally state the problem setup for multi-group fairness, with
an emphasis on the case of multiclass prediction. In Section 3, we present our new notions of
multicalibration, relate them to prior definitions in the literature, and discuss their applications.
In Section 4, we discuss outcome indistinguishability and its relationship to leakage simulation, a
connection that motivates several of our results. In Section 5, we give an algorithm template that
unifies prior algorithms for achieving outcome indistinguishability, and also derive our improved
sample complexity upper bounds. In Section 6, we detail the connection to graph regularity. In
Section 7, we prove our novel variant of the hardcore lemma.

General Notation For sets A and B, we let BA denote the set of functions f : A → B. For
f ∈ BA, we let f(a) and fa both denote the output of f on input a ∈ A.

2. The Multi-Group Fairness Framework

Individuals and Outcomes Building on the framework introduced by Dwork et al. (2021), we
consider a pair (i, o∗i ) of jointly distributed random variables, where i is an individual drawn from
some fixed distribution over a finite population X and o∗i is an outcome of individual i that belongs
to a finite set O consisting of ℓ = |O| possible outcomes.

Modeled Outcomes A predictor associates a probability distribution over possible outcomes to
each member of the population. In other words, a predictor is a function p̃ : X → ∆O, where
∆O =

{
f ∈ [0, 1]O :

∑
o∈O f(o) = 1

}
. Let p̃j denote the output p̃(j) of the function p̃ on input

j ∈ X , and let õi ∈ O be a random variable whose conditional distribution given i is specified by
p̃i. In other words, Pr[õi = o | i] = p̃i(o) for each possible outcome o ∈ O. We call õi the modeled
outcome of individual i.

Binary Outcomes We say that outcomes are binary if O = {0, 1}. In this case, we can naturally
identify ∆O with the unit interval [0, 1] by mapping the distribution p̃j ∈ ∆O to the probability
p̃j(1) ∈ [0, 1] that p̃j assigns to a positive outcome. With this convention, the conditional distribu-
tion of õi given i is Ber(p̃i), which is how õi was originally defined in Dwork et al. (2021).

Demographic Subpopulations Multi-group fairness examines the ways that a predictor p̃ might
mistreat members of large, possibly overlapping subpopulations S ⊆ X in a prespecified collection
C. Each such subpopulation has an associated indicator function 1S : X → {0, 1}, and, following
Gopalan et al. (2022a), it will be notationally convenient for us to represent C directly as a collection
of such functions. Concretely, we allow C to be any collection of functions c : X → Y for some set
Y . For consistency, we will write the output c(j) of the function c on input j ∈ X as cj .

Discretization We will sometimes round predictions to the nearest point in a finite set G ⊆ ∆O,
which we assume to be an η-covering of ∆O with respect to the statistical distance metric δ(f, g) =
1
2

∑
o∈O |f(o) − g(o)|, meaning that for all f ∈ ∆O, there exists g ∈ G such that δ(f, g) ⩽ η.

Formally, we say that p̂ : X → G is the discretization of p̃ to G if p̂j = argming∈G δ(p̃j , g) for each
j ∈ X , breaking ties arbitrarily. We define ôi ∈ O to be the modeled outcome of an individual i
with respect to the predictor p̂, meaning that Pr[ôi = o | i] = p̂i(o) for each o ∈ O.

The size of G will also play an important role in deriving our improved complexity upper bounds
in Section 5. We show in Section 3 that by taking G to be the intersection of ∆O with the grid{
0, 1

m , 2
m , . . . , m−1

m , 1
}ℓ for an appropriate integer m, we achieve |G| < (3/η)ℓ−1. In this case,

discretization to G amounts to coordinate-wise rounding.
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Finally, we remark that discretization merges a predictor’s level sets, and this process may de-
stroy any special structure these level sets possess. This observation will become important in our
discussion of graph regularity in Section 6.

3. Multicalibration via Statistical Closeness

Multiaccuracy and multicalibration are two essential multi-group fairness notions introduced by
Hébert-Johnson et al. (2018). In this section, we state new, natural variants of these definitions in
terms of statistical distance, which, for random variables X and Y with finite support, is measured
by the formula

δ(X,Y ) = max
A

∣∣Pr[X ∈ A]− Pr[Y ∈ A]
∣∣.

The maximum is taken over A ⊆ supp(X) ∪ supp(Y ), and we write X ≈ε Y if δ(X,Y ) ⩽ ε.

Definition 1 A predictor p̃ is statistically (C, ε)-multiaccurate if (ci, õi) ≈ε (ci, o
∗
i ) for all c ∈ C.

Definition 2 A predictor p̃ is statistically (C, ε)-multicalibrated if (ci, õi, p̃i) ≈ε (ci, o
∗
i , p̃i) for all

c ∈ C.

A notable way in which Definitions 1 and 2 differ from previous definitions in the multi-group
fairness literature is that in the case of C ⊆ {0, 1}X , our definitions concern the behavior of p̃ on
both the 0-level set and 1-level set of each c ∈ C, as opposed to merely the 1-level sets. We will
demonstrate shortly that this distinction is unimportant if C ⊆ {0, 1}X is closed under complement,
meaning that 1S ∈ C if and only if 1X\S ∈ C. We also emphasize that our definition generalizes to
the case where c has an arbitrary range Y; we do not require that Y is either {0, 1} or [0, 1].

Henceforth, we will write “multiaccuracy” and “multicalibration” to refer to statistical multi-
accuracy and statistical multicalibration, respectively, unless otherwise specified. However, when
discussing results that crucially rely on these new, statistical distance-based definitions, we will
refrain from using these abbreviations.

In our discussion of graph regularity in Section 6, we will also need a stronger variant of the
multicalibration definition, which we call strict multicalibration, that has appeared only implicitly
in prior works on algorithmic fairness and has a close connection to the notion of “swap” multical-
ibration independently proposed by Gopalan et al. (2023b). To state the definition succinctly, we
introduce the shorthand

δ(X,Y | Z) = max
A

∣∣Pr[X ∈ A | Z]− Pr[Y ∈ A | Z]
∣∣,

which is a function of a random variable Z distributed jointly with X and with Y . Specifically, if
the value of Z is z, then the value of δ(X,Y | Z) is

δ(X,Y | Z = z) = max
A

∣∣Pr[X ∈ A | Z = z]− Pr[Y ∈ A | Z = z]
∣∣.

Definition 3 A predictor p̃ is strictly (C, ε)-multicalibrated if

E
[
max
c∈C

δ
(
(ci, õi), (ci, o

∗
i ) | p̃i

)]
⩽ ε.
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strict multicalibration multicalibration multiaccuracy

Figure 1: Implications (solid arrow: rounding not required, dashed arrow: rounding required)

Intuitively, strict multicalibration asks that a predictor be multiaccurate on most of its level sets.
As we will see shortly, Definition 2, which is closest to the original definition of multicalibration
and suffices for some applications, does not require multiaccuracy on even a single level set.

In Appendix A, we prove that strict (C, ε)-multicalibration implies (C, ε)-multicalibration, which
in turn implies (C, ε)-multiaccuracy. In Appendix B, we prove that the following theorem, which
shows that the converse implications do not hold.

Theorem 4 For all ε > 0, there exist finite sets X and C ⊆ {0, 1}X , a pair of joint random
variables (i, o∗i ) ∈ X × {0, 1}, and predictors p̃, p̃′ : X → [0, 1] such that:

(a) p̃ is (C, 0)-multiaccurate but not (C, 1/3)-multicalibrated.

(b) p̃′ is (C, ε)-multicalibrated but not strictly (C, 1/4)-multicalibrated.

The separation of multicalibration and strict multicalibration comes with an important caveat:
any multicalibrated predictor p̃ can be discretized to achieve strict multicalibration with respect to
the same collection C but a significantly worse parameter ε. To state this result, proved in Ap-
pendix C, recall that p̂i denotes the discretization of p̃i to a finite η-covering G of ∆O.

Theorem 5 If p̃ is (C, ε)-multicalibrated, then p̂ is strictly (C, |G|ε+ η)-multicalibrated.

Corollary 6 Let ℓ = |O|. For sufficiently small ε > 0, any
(
C, εℓ

)
-multicalibrated predictor can

be made strictly (C, 4ε)-multicalibrated by coordinate-wise rounding to a precision depending only
on ε and ℓ.

The relationships among these definitions are depicted in Figure 1. In Appendix D, we explain
the relationships of these definitions to existing notions of multiaccuracy and multicalibration that
appear in the algorithmic fairness literature. Strict multicalibration was not been explicitly defined in
the original works on multicalibration. Nevertheless, their algorithms actually achieve this stronger
notion. In Appendix E, we demonstrate the usefulness of our new definitions by (re)proving the re-
cent interesting results on omniprediction by Gopalan et al. (2022a, 2023a). The statistical distance
condition of our definitions yields a very simple and concise proof and extends the state-of-the-art
to the multiclass prediction setting. We further extend the concept of omniprediction to consider
loss functions that may depend on information of individuals.

A few remarks are in order. Although our statistical distance-based definitions handle real-
valued functions c, our algorithms for achieving them only work with discretized ranges. When
c has continuous range, ci can completely describe i, and statistical closeness would then force p̃
to be essentially equal to p∗. At the same time, we can achieve covariance-based multicalibration
for continuous functions c with range [0, 1] by viewing ci as a probability distribution and replac-
ing ci with a random instantiation bi ∼ Ber(ci). This gives rise to a weaker statistical closeness
condition, namely (bi, õi, p̃i) ≈ε (bi, o

∗
i , p̃i) for all c ∈ C, that is nonetheless sufficient for some
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applications (e.g. Lemma 64 in Appendix J). In particular, if an application is only concerned with
expectations of the form E [f(o, p̃i)ci] for an arbitrary function f , where ci is used in a linear fash-
ion, the weaker statistical closeness condition suffices because E [f(o∗i , p̃i)ci] = E [f(o∗i , p̃i)bi] and
E [f(õi, p̃i)ci] = E [f(õi, p̃i)bi].

4. Leakage Simulation and Outcome Indistinguishability

The interesting relationship between multiaccuracy and the leakage simulation lemma, or simulating
auxiliary inputs problem, in cryptography on the one hand allows us to obtain the first lower bound
on the complexity of multiaccurate predictors. On the other hand, it inspires us to ask whether the
stronger notion of multicalibration yields stronger consequences. We show this is the case, deriving
a multicalibration-based proof of a hardcore lemma for real-valued functions.

Originating in the field of leakage-resilient cryptography Dziembowski and Pietrzak (2008),
the problem of leakage simulation defined by Jetchev and Pietrzak (2014) is as follows. Given
correlated random variables (X,O) on a set X × O and a collection of distinguisher functions
A = {A : X ×O → {0, 1}}, the objective is to construct a low-complexity (w.r.t. A) simulator h :
X → ∆O such that no function inA can distinguish a sample (X,O) from the true joint distribution
from a simulated sample (X, Õ), where X is sampled from the true marginal distribution over X
and Õ is sampled according to the simulated distribution h(X).

Observe that the leakage simulation problem can also be viewed as an equivalent reformula-
tion of the problem of constructing a predictor satisfying no-access outcome indistinguishability
proposed in Dwork et al. (2021), which they showed is equivalent to multiaccuracy. In the most
general form, outcome indistinguishability studies a familyA of distinguishers, which are functions
A : X × O × (∆O)X → [0, 1] that take as input an individual, an outcome, and a predictor and
attempts to distinguish genuine outcomes o∗i from modeled outcomes õi. The definition of outcome
indistinguishability requires that the distinguishing advantage shall be small. Formally,

Definition 7 A predictor p̃ : X → ∆O is (A, ε)-outcome-indistinguishable if for all A ∈ A,∣∣∣E [A(i, õi, p̃)]− E [A(i, o∗i , p̃)]
∣∣∣ ⩽ ε.

In the above definition, the distinguisher A has white-box access to the predictor p̃, which gives
the most information of p̃. By restricting the access of A to the predictor p̃ in different manners,
Dwork et al. Dwork et al. (2021) obtained a hierarchy of definitions of outcome indistinguisha-
bility. Of particular interest to us will be their notions of no-access outcome indistinguishability
and sample-access outcome indistinguishability, which are shown to be equivalent to multiaccu-
racy and multicalibration respectively. In no-access outcome indistinguishability, the distinguisher
cannot access p̃ at all, that is, every distinguisher A ∈ A takes the form A(j, o, p̃) = A′(j, o).
In sample-access outcome indistinguishability, the distinguisher is only provided the output of p̃
on the individual under consideration—equivalently, each distinguisher A ∈ A takes the form
A(j, o, p̃) = A′(j, o, p̃j) for some function A′ : X ×O × (∆O)→ [0, 1].

We observe that no access outcome indistinguishability is equivalent to leakage simulation:
(i, o∗i ) is the analogue of (X,O); the predictor p̃ is analogous to the simulator h while õi is analogous
to Õ (sampled according to h(X) and p̃i respectively). The goals are also identical: no distinguisher
A in the class considered can tell apart (i, o∗i ) from (i, õi), or (X,O) from (X, Õ). In addition,

7
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algorithms in Trevisan et al. (2009); Jetchev and Pietrzak (2014) for achieving leakage simulation
are very similar to the multiaccuracy algorithm in Hébert-Johnson et al. (2018).

Leveraging this equivalence immediately yields the first lower bound for the complexity of no-
access outcome indistinguishability predictors relative to A. This follows from the result in Chen
et al. (2018) that, relative to A, the complexity of a simulator is at least Ω(ℓε−2), namely, the
simulator makes at last Ω(ℓε−2) black-box calls to some distinguishers in A. Note that the lower
bound only holds for simulators that are restricted to black-box use of the distinguishers and satisfy
a restriction that, when invoked on input X , they only make black-box calls to the distinguishers
on the same input X . All the leakage simulation, multiaccuracy, and multicalibration algorithms
in the literature satisfy this restriction. Therefore, we conclude that predictors satisfying no-access
outcome indistinguishability (under same constraints) also have relative complexity Ω(ℓε−2) w.r.t.
distinguishers in A. The equivalence between no-access outcome indistinguishability and multi-
accuracy further tells us that the same relative complexity lower bound holds for multiaccurate
predictors w.r.t. C (the analogue of A). Finally, since multicalibration is stronger, the same lower
bound extends to multicalibrated predictors.

This forecloses the existence of predictors that are smaller than the distinguisher yet fools them
all (subject to the above restriction). In other words, there is no predictor analogous to a pseudo-
random generator that fools all polynomial-time tests.

Beyond the lower bound, the connection between no-access outcome indistinguishability and
leakage simulation suggests two additional directions. First, the work of Chen et al. (2018) pre-
sented a leakage simulation algorithm via no-regret learning. Inspired by their algorithm, we present
in Section 5 a general algorithmic framework for achieving sample-access outcome indistinguisha-
bility, equivalently multi-calibration, also via no-regret learning. Our framework unifies algorithms
in prior works. Second, inspired by the connection between leakage simulation and the hardcore
lemma for Boolean functions, we ask whether the stronger notion of multicalibration yields stronger
consequences. Indeed, we present in Section 7 a multicalibration-based proof of a hardcore lemma
for real-valued functions.

5. Sample Complexity and No-Regret Learning

Various notions of multi-group fairness, including multiaccuracy, multicalibration, strict multicali-
bration (Definitions 1, 2, and 3), and low-degree multicalibration, a hierarchy of tractable relaxations
of the standard multicalibration definition introduced in Gopalan et al. (2022b), are implied by the
notion of outcome indistinguishability of Dwork et al. (2021) with respect to different classes of
adversaries. Thus, to achieve these notions it suffices to design algorithms for outcome indistin-
guishability. Here, our contributions are twofold. First, we present an algorithmic template that
unifies prior algorithms for achieving outcome indistinguishability through the lens of no-regret
learning (see Appendix F). The template in Algorithm 2 can be viewed as running |X | instances of
a no-regret algorithm in parallel, where each instance corresponds to one member j of the population
X , and the distribution p̃j corresponds to a mixed strategy over o ∈ O. The predicted probabilities
p̃j(o) are refined over multiple rounds. The loss function, however, is chosen based on the entire
predictor p̃ at the current round; see Appendix F for details. Second, we show that Algorithm 1,
an instantiation of our algorithmic template, yields an improved upper bound on sample complexity
for achieving multicalibration in the multiclass setting and for low-degree multicalibration.
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Algorithm 1: Multiclass Outcome Indistinguishability via Multiplicative Weight Updates

Data: distinguisher family A, parameter ε, iteration count t, samples per iteration n
Result: predictor p̃ : X → ∆O
p̃
(0)
j (o)← 1/|O| for all j ∈ X and o ∈ O // initialize p̃(0) to constant

for s = 0, 1, . . . , t− 1 do
(is1, o

∗
is1

), . . . , (isn, o
∗
isn

) ∼ (i, o∗i ) // draw n fresh iid samples

changed← false
for A ∈ A do

α←
∑n

m=1A(ism, o∗ism , p̃
(s)) // genuine outcomes

β ←
∑n

m=1

∑
o∈O p̃ism(o)A(ism, o, p̃(s)) // modeled outcomes

if not changed and |β − α| > εn/2 then // is A’s advantage large?
γ ← sign(β − α) · ε/3 // step size
for j ∈ X do

for o ∈ O do
fj(o)← p̃

(s)
j (o) exp(−γA(j, o, p̃(s))) // update weights

end
p̃
(s+1)
j (o)← fj(o)/

∑
o′∈O fj(o

′)

changed← true
end

end
end
if not changed then return p̃(s)

end
return ⊥

Lemma 8 Running Algorithm 1 with appropriately chosen t ≲ log(|O|)/ε2 and n ≲ log(|A|t)/ε2
yields an (A, ε)-outcome-indistinguishable predictor with probability at least 99%.5

By choosing the distinguisher family A judiciously, we can achieve multicalibration in a more
sample-efficient manner than existing algorithms. In fact, the construction of the family A follows
naturally from our statistical distance-based definition of multicalibration:

Definition 9 Let AMC
C,G = {Ac,E | c ∈ C, E ⊆ Y ×O × G} , where

Ac,E(j, o, p̃) = 1[(cj , o, p̂j) ∈ E]

for each member j ∈ X , possible outcome o ∈ O, and predictor p̃ : X → ∆O. (Recall from
Section 2 that C is a collection of functions c : X → Y and that p̂ denotes the discretization of p̃ to
a “grid” G, which we assume to be an η-covering of ∆O.)

Theorem 10 Running Algorithm 1 on A = AMC
C,G and appropriately chosen G, t, n yields a predic-

tor p̃ such that p̂ is (C, ε)-multicalibrated with probability at least 99%. The algorithm samples at

5. By f(x) ≲ g(x), we mean that f(x) = O(g(x)).
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most

tn ≲

(
log(|C|) + |Y||O|

(
4

ε

)|O|−1
)
· log(|O|)

ε4

i.i.d. individual-outcome pairs.

Letting Y = {0, 1} in Theorem 10, so that C ⊆ {0, 1}X , we recover the first sample complexity
upper bound that we stated in Section 1. Intuitively, our savings compared to prior works comes
from the fact that our algorithm directly targets the milder requirements of ordinary multicalibration,
while prior algorithms typically “go through” strict multicalibration by aiming for stringent per-
level-set guarantees.

To justify the second upper bound we stated in Section 1, we now turn our attention to the notion
of low-degree multicalibration from Gopalan et al. (2022b). A rephrased statement of the definition
is as follows:

Definition 11 A function f : [0, 1]ℓ → [0, 1] is a monomial of degree less than k if it takes the form
f(v) = vt1 · · · vtj for some j < k indices t1, . . . , tj ∈ [ℓ]. For O = {0, 1} and C ⊆ [0, 1]X and
k ∈ N, let AMC

C,k to be the family of all distinguishers of the form

Ac,f,o′(j, o, p̃) = c(j)f(p̃j)1[o = o′],

where c ∈ C and o′ ∈ O and f is a monomial of degree less than k. We say that a predictor p̃ is
(C, ε)-degree-k multicalibrated if p̃ is (AMC

C,k , ε)-outcome indistinguishable.

Using the fact that the familyAMC
C,k is a subset ofAMC

C,G , one can show that degree-k multicalibra-
tion is weaker than the notion of multicalibration considered so far. With this in mind, it should not
be surprising that running Algorithm 1 onAMC

C,k instead ofAMC
C,G immediately gives us the following

tighter upper bound on the samples needed for degree-k multicalibration:

Theorem 12 Running Algorithm 1 on A = AMC
C,k and appropriately chosen t, n yields a (C, ε)-

degree-k multicalibrated predictor with probability at least 99% and samples at most

tn ≲

(
log(|C|) + k log

(
ℓ

k

)
+ log

(
ℓ

ε

))
· log(ℓ)

ε4

i.i.d. individual-outcome pairs, where ℓ = |O| and ℓ ⩾ k.

In Appendix F.4, we prove the theorems of this section, and also give an upper bound on the
sample complexity of strict multicalibration. The proofs will show, in particular, that the improve-
ment in our Theorem 12 compared to Theorem 35 of Gopalan et al. (2022b) comes primarily from
our deliberate use of multiplicative updates to p̃ in Algorithm 1, as opposed to additive updates.

6. Graph Regularity as Structured Multigroup Fairness

Szemerédi’s regularity lemma Szemerédi (1975) is a cornerstone result in extremal graph theory
with a wide range of applications in combinatorics, number theory, computational complexity the-
ory, and other areas of mathematics. Roughly speaking, it states that any large, dense graph can

10
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be decomposed into parts that behave “pseudorandomly” in a certain precise sense. The Frieze-
Kannan weak regularity lemma Frieze and Kannan (1996) is a related result in graph theory with
a qualitatively weaker conclusion, but parameter dependencies much better suited for algorithmic
applications.

The goal of this section is to show that regularity partitions of a graph correspond to predictors
satisfying multi-group fairness and an additional structural condition on their level sets. In Sec-
tion 6.1, we state various definitions of graph regularity. In Section 6.2, we state and prove the
correspondence, which is the key result of this section.

6.1. Definitions of Graph Regularity

Let G = (V,E) be a graph, by which we mean that V is a finite set and E ⊆ V × V . For vertex
subsets S ⊆ V and T ⊆ V , let eG(S, T ) = |(S × T ) ∩ E| count the number of edges from S to T ,
and let dG(S, T ) = eG(S, T )/|S||T | denote the density of edges from S to T . When the graph G is
clear from context, we will omit the subscript G from eG and dG.

To state Szemerédi’s regularity lemma, we must first recall the notion of an ε-regular pair:

Definition 13 Let X,Y ⊆ V . We say that the pair (X,Y ) is ε-regular if

|d(S, T )− d(X,Y )| ⩽ ε

for all S ⊆ X and T ⊆ Y such that |S| ⩾ ε|X| and |T | ⩾ ε|Y |.

Intuitively, a pair (X,Y ) is ε-regular if edges from X to Y are distributed in a “pseudorandom”
fashion. The Szemerédi regularity lemma finds a partition P of the vertices of V such that most
pairs of parts are ε-regular, in the following sense:

Definition 14 A partition P = {V1, . . . , Vm} of V satisfies Szemerédi ε-regularity if∑
j,k∈[m]

(Vj ,Vk) not ε-regular

|Vj ||Vk| ⩽ ε|V |2.

In contrast to Szemerédi regularity, which gives fine-grained “local” regularity guarantees on
the pairs of regular parts, the weaker regularity condition of Frieze and Kannan (1996) gives only a
coarse “global” regularity guarantee:

Definition 15 A partition P = {V1, . . . , Vm} of V satisfies Frieze-Kannan ε-regularity if for all
S, T ⊆ V , ∣∣∣∣∣∣e(S, T )−

∑
j,k∈[m]

d(Vj , Vk)|S ∩ Vj ||T ∩ Vk|

∣∣∣∣∣∣ ⩽ ε|V |2 .

Intermediate Regularity We will soon show that for a certain instantiation of the multi-group
fairness framework, Szemerédi regularity corresponds to strict multicalibration, and Frieze-Kannan
regularity corresponds to multiaccuracy. Inspired by this connection, we will also show that (or-
dinary) multicalibration corresponds to an intermediate notion of graph regularity that has, to our
knowledge, not appeared in the prior literature:

11
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Figure 2: A graph G, a regularity partition of G, and a multicalibrated edge predictor for G.

Definition 16 Let X,Y, S, T ⊆ V . We say that the pair (X,Y ) is (S, T, ε)-regular if

|d(S ∩X,T ∩ Y )− d(X,Y )| ⩽ ε.

Definition 17 A partition P = {V1, . . . , Vm} of V satisfies intermediate ε-regularity if for all
S, T ⊆ V , ∑

j,k∈[m]
(Vj ,Vk) not (S,T,ε)-regular

|S ∩ Vj ||T ∩ Vk| ⩽ ε|V |2 .

We chose the name intermediate regularity to emphasize that it is a strictly stronger notion than
Frieze-Kannan weak regularity, but still strictly weaker than Szemerédi regularity. In Appendix G,
we prove these claimed relationships. In Appendix H, we present an algorithm for achieving inter-
mediate regularity.

6.2. The Regularity-Multicalibration Theorem

The Szemerédi and Frieze-Kannan regularity lemmas state that any graph G has a partition satis-
fying ε-regularity (of the appropriate kind) whose number of parts is bounded by a function of ε,
independent of the size of the graph. The partitions constructed in the proofs of these lemmas can be
viewed as low-complexity approximations to the graph that fool a particular family of cryptographic
distinguishers, as observed by Skorski (2017).

In this section, we show that these distinguishers fit neatly within the framework of multi-group
fairness. To begin, we will recall that Frieze-Kannan weak regularity corresponds naturally to mul-
tiaccuracy, a result established in Trevisan et al. (2009). We then prove that Szemerédi regularity
corresponds naturally to strict multicalibration with respect to the same collection of subpopula-
tions. Taking this connection one step further, we show that (ordinary) multicalibration naturally
gives rise to our new notion of intermediate regularity, which is stronger than Frieze-Kannan regu-
larity but weaker than Szemerédi regularity.

Definition 18 In the edge prediction problem for a graph G = (V,E), the population is X =
V × V , each individual i ∈ V × V is a vertex pair drawn uniformly at random, and the true
outcome of individual i is the single bit o∗i = 1[i ∈ E]. The collection of protected subpopulations
is C = {1S×T | S, T ⊆ V }. In this setting, we call p̃ : X → [0, 1] an edge predictor for G.

12
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Theorem 19 (Regularity-Multicalibration) Given a graph G, consider the following definitions
of fairness for an edge predictor p̃ for G and regularity for a vertex partition P of G:

(i) multiaccuracy and Frieze-Kannan regularity.

(ii) multicalibration and intermediate regularity.

(iii) strict multicalibration and Szemerédi regularity.

For each such pair of definitions, there exists an absolute constant 0 < c < 1 such that the
following two implications hold for sufficiently small ε:

(a) If P is ε-regular, the predictor p̃ that outputs d(Vj , Vk) on all of Vj ×Vk ∈ P2 is (C, εc)-fair.6

(b) If p̃ is (C, ε)-fair and the set of level sets of p̃ is P2 for some partition P , then P is εc-regular.

Proof Sketch For Vj , Vk ∈ P , define djk = d(Vj , Vk). In Appendix G, we will show through
algebraic manipulations that the regularity criteria of the previous section are equivalent, up to a
polynomial change in ε, to the following conditions:

max
S,T⊆V

∣∣∣∣∣∣
m∑
j=1

m∑
k=1

e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|

∣∣∣∣∣∣ ⩽ ε|V |2 for Frieze-Kannan ε-regularity,

max
S,T⊆V

m∑
j=1

m∑
k=1

|e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|| ⩽ ε|V |2 for intermediate ε-regularity,

m∑
j=1

m∑
k=1

max
S,T⊆V

|e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|| ⩽ ε|V |2 for Szemerédi ε-regularity.

The relationships among our fairness criteria can be phrased similarly. Indeed, let ∆S,v(p̃) = Pr[i ∈
S, õi = 1, p̃i = v] − Pr[i ∈ S, o∗i = 1, p̃i = v] for a predictor p̃ : X → [0, 1], a subpopulation
S ⊆ X and a value v ∈ [0, 1]. Then, the requirements of Definitions 1, 2, and 3 reduce to:

max
S

∣∣∣∣∣∑
v

∆S,v(p̃)

∣∣∣∣∣ ⩽ ε for (C, ε)-multiaccuracy,

max
S

∑
v

|∆S,v(p̃)| ⩽ ε for (C, ε)-multicalibration,∑
v

max
S
|∆S,v(p̃)| ⩽ ε for strict (C, ε)-multicalibration,

where the maxima are taken over S such that 1S ∈ C or 1X\S ∈ C or S = X and the sums are
taken over the range of p̃. Comparing the two displayed sets of inequalities will yield part (a) of the
theorem. Part (b) will follow from a similar argument. For a full proof, see Appendix I.

6. For a partition P = {V1, . . . , Vm} of the vertices V , the set P2 = {Vj × Vk | j, k ∈ [m]} denotes the partition of
V × V obtained from all pairwise Cartesian products of parts of P .
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7. Hardcore Lemma for Real-Valued Functions

The leakage simulation lemma is connected with the hard-core lemma for deterministic Boolean
functions as shown by Trevisan et al. (2009); Vadhan and Zheng (2013). We show that multicali-
bration enables stronger consequences, namely a hard-core lemma for real valued functions.

Informally, Impagliazzo’s hard-core lemma says that for any boolean function f : X → {0, 1}
that is hard on average against a class C ⊆ {0, 1}X , there is a large subset ofX , the hard core, whose
size depends on the hardness of f , on which f is effectively pseudorandom. We prove an analogous
statement for real valued functions (equivalently, random functions with boolean outcomes) p∗ :
X → [0, 1], where hardness of being correct is replaced by hardness of approximation (in L2

distance), while the hardcore/pseudorandom condition is replaced with a covariance condition. In
other words, if it’s hard to approximate the function, then there’s some large set on which it’s hard
to even have any non-negligible covariance.

In order to formally state the theorem, let RT (C) denote the class of functions of relative com-
plexity T with respect to C. Let a C gate denote black-box computation of a function c ∈ C. More
precisely, every p̆ ∈ RT (C) is a circuit containing T C-gates and poly(T ) additional basic opera-
tions (e.g., floating-point arithmetic and Boolean logical operations). In particular, this captures the
class of all functions which can be the outcome of the multicalibration algorithm after T rounds
with an appropriate ε.

Theorem 20 (Hardcore lemma for probabilities) Let α > 0, γ ∈ (0, 13 ]. Let C ∈ [0, 1]X be a
collection of real valued functions. Let p∗ : X → [0, 1] be a function which is hard to α-approximate
by functions in RT (C) for T = O(α−6γ−4), i.e., ∀p̆ ∈ RT (C),E[(p∗i − p̆i)

2] > α.
Then, there exists a hardcore set S ∈ X where Pr[i ∈ S] > α2γ

4 and ∀c ∈ C,Cov(ci, p∗i | i ∈
S) < γ Var(p∗i | i ∈ S).

The proof of this statement is based on the following intuition: First, the multicalibration algo-
rithm gives us a relatively simple predictor p̆. Next, a multicalibrated predictor partitions X into
slices on which either (1) p∗ has low variance (so p̆ is highly accurate), or (2) p̆ is not highly accurate
(so p∗ is high variance) but C is not able to take advantage of this (nothing in C is correlated with p∗

on this slice). Finally, if p̆ is far from p∗, then there must exist a set on which the latter condition is
true. That set is the hardcore. For more detail, we refer the reader to Appendix J.
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Appendix A. Relationships Among Definitions

First, we show that strict (C, ε)-multicalibration implies (C, ε)-multicalibration, which in turn im-
plies (C, ε)-multiaccuracy:

Theorem 21 If p̃ is strictly (C, ε)-multicalibrated, then p̃ is (C, ε)-multicalibrated.

Proof If p̃ is strictly (C, ε)-multicalibrated, then for all c ∈ C,

δ
(
(ci, õi, p̃i), (ci, o

∗
i , p̃i)

)
= E

[
δ
(
(ci, õi), (ci, o

∗
i ) | p̃i

)]
⩽ E

[
max
c′∈C

δ
(
(c′i, õi), (c

′
i, o

∗
i ) | p̃i

)]
⩽ ε,

so p̃ is (C, ε)-multicalibrated, as well.

Theorem 22 If p̃ is (C, ε)-multicalibrated, then p̃ is (C, ε)-multiaccurate.

Proof If p̃ is (C, ε)-multicalibrated, then for all c ∈ C,

δ
(
(ci, õi), (ci, o

∗
i )
)
⩽ δ
(
(ci, õi, p̃i), (ci, o

∗
i , p̃i)

)
⩽ ε,

so p̃ is (C, ε)-multiaccurate, as well.

17



DWORK LEE LIN TANKALA

Appendix B. Proof of Theorem 4

(a) Let X = {0, 1} and C = {1X }. Consider an individual i drawn uniformly from X whose
outcome o∗i is conditionally distributed as Ber(1/2) given i. Then the predictor p̃j = j is
(C, 0)-multiaccurate but not (C, 1/2− α)-multicalibrated for any α > 0.

(b) Let X = [m]× [m] for some positive integer m, and let C = {ck : k ∈ [m]} where

ck(j) = 1[j1 = k and j2 ⩽ k]

for each member j = (j1, j2) of the population. Consider an individual i = (i1, i2) drawn
uniformly from X whose outcome is o∗i = 1[i1 ⩾ i2], and let p̃j = j1/m. The range of p̃ is
{1/m, 2/m, . . . 1}. A simple calculation shows that for each function ck ∈ C and each value
v in the range of p̃, we have that Pr[p̃i = v] = 1/m and

δ
(
(cki, õi), (cki, o

∗
i ) | p̃i = v

)
=

{
2v(1− v) if v = k/m

0 otherwise

(recall from Section 2 that cki = ck(i)). Therefore, as m→∞,

max
ck∈C

δ
(
(cki, õi, p̃i), (cki, o

∗
i , p̃i)

)
= max

k∈[m]

2(k/m)(1− k/m)

m
→ 0

but

E
[
max
ck∈C

δ
(
(cki, õi), (cki, o

∗
i ) | p̃i

)]
=

m∑
k=1

2(k/m)(1− k/m)

m
→ 1

3
,

so p̃ is (C, ε)-multicalibrated but not strictly (C, 1/3− α)-multicalibrated for any α > 0.

Appendix C. Rounding Predictions

In this section, we prove Theorem 5 and Corollary 6. In what follows, let p̃ be a (C, ε)-multicalibrated
predictor, and recall from Section 2 that p̂ denotes the discretization of p̃ to a finite set G ⊆ ∆O. If
G is an η-covering of ∆O, then the inequality δ(ôi, õi | i) ⩽ η holds almost surely, so

E
[
max
c∈C

δ
(
(ci, ôi), (ci, o

∗
i ) | p̂i

)]
⩽ E

[
max
c∈C

δ
(
(ci, õi), (ci, o

∗
i ) | p̂i

)]
+ η

and the expectation on the right hand side is precisely∑
v∈G

max
c∈C

δ
(
(ci, õi), (ci, o

∗
i ) | p̂i = v

)
Pr[p̂i = v].

Each of |G| terms in the sum can be bounded as follows:

δ
(
(ci, õi), (ci, o

∗
i ) | p̂i = v

)
Pr[p̂i = v] ⩽ δ

(
(ci, õi, p̂i), (ci, o

∗
i , p̂i)

)
⩽ δ
(
(ci, õi, p̃i), (ci, o

∗
i , p̃i)

)
since p̂i is a function of p̃i,

⩽ ε since p̃ is (C, ε)-multicalibrated.

At this point, we have shown that p̂ is strictly (C, |G|ε+η)-multicalibrated, which proves Theorem 5.
To prove Corollary 6, we use the following lemma, which gives us a grid G such that |G|εℓ+η < 4ε
when η = 3ε is sufficiently small.
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Lemma 23 For all sufficiently small η > 0, the grid G = ∆O ∩
{
0, 1

m , 2
m , . . . , m−1

m , 1
}ℓ with

m = ⌈(ℓ− 1)/η⌉ is an η-covering of ∆O of size |G| < (3/η)ℓ−1.

Proof Given any f ∈ ∆O, we can find a grid point g ∈ G such that f and g differ by at most 1/m
in all but one coordinate. Since (ℓ − 1)/m ⩽ η, this means that G is an η-covering. A counting
argument shows that the size of G is

|G| =
(
m+ ℓ− 1

ℓ− 1

)
⩽

(
e(m+ ℓ− 1)

ℓ− 1

)ℓ−1

⩽

(
e

(
1

η
+ 2

))ℓ−1

<

(
3

η

)ℓ−1

for all ℓ ⩾ 2 and all sufficiently small η > 0.

Appendix D. Relationships to Prior Definitions

In this section, we explain the relationships of our new definitions to existing notions of multiac-
curacy and multicalibration that appear in the algorithmic fairness literature. We emphasize that
strict multicalibration has not been explicitly defined in prior works. Nevertheless, their algorithms
actually achieve this stronger notion.

The original definitions of multiaccuracy and multicalibration from the algorithmic fairness
literature roughly correspond to our notions of the same names when we restrict attention to binary
outcomes and C ⊆ {0, 1}X . To facilitate the comparison, we state the following two definitions:

Definition 24 Assume O = {0, 1} and C ⊆ {0, 1}X . We say a predictor p̃ is conditionally (C, ε)-
multiaccurate if

for all 1S ∈ C such that Pr[i ∈ S] ⩾ ε,∣∣Pr[o∗i = 1 | i ∈ S]− Pr[õi = 1 | i ∈ S]
∣∣ ⩽ ε.

Definition 25 Assume O = {0, 1} and C ⊆ {0, 1}X . We say a predictor p̃ is conditionally (C, ε)-
multicalibrated if

for all 1S ∈ C such that Pr[i ∈ S] ⩾ ε,

there exists S′ ⊆ S such that Pr[i ∈ S′ | i ∈ S] ⩾ 1− ε and for all v ∈ supp(p̃i | i ∈ S′),∣∣∣Pr[o∗i = 1 | i ∈ S′ and p̃i = v]− v
∣∣∣ ⩽ ε.

These conditional versions of multiaccuracy and multicalibration closely resemble their original
definitions in Hébert-Johnson et al. (2018). They capture the intuition that the predictions of a
multiaccurate (resp. multicalibrated) predictor are approximately accurate in expectation (resp.
calibrated) on each subpopulation under consideration. It is also possible to give a conditional
version of our definition of strict multicalibration:

Definition 26 Assume thatO = {0, 1} and C ⊆ {0, 1}X . We say a predictor p̃ is conditionally and
strictly (C, ε)-multicalibrated if

there exists V ⊂ [0, 1] such that Pr[p̃i ∈ V ] ⩾ 1− ε and for all v ∈ V,

for all 1S ∈ C such that Pr[i ∈ S | p̃i = v] ⩾ ε,∣∣∣Pr[o∗i = 1 | i ∈ S and p̃i = v]− v
∣∣∣ ⩽ ε.
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Multiaccuracy: Definition 1 Definition 24

Multicalibration: Definition 2 Definition 25

Strict Multicalibration: Definition 3 Definition 26

Figure 3: Relationships to Prior Definitions

Comparing Definitions 25 and 26 gives insight into the qualitative difference between mul-
ticalibration and strict multicalibration. Specifically, strict multicalibration reverses the order of
quantifiers in the definition of multicalibration. If p̃ is a strictly multicalibrated predictor, then most
of its v-level sets satisfy the fairness guarantee uniformly across all protected subpopulations. In
other words, p̃ is C-multiaccurate on its v-level set. In contrast, if p̃ is multicalibrated but not strictly
so, then each level set p̃−1(v) may fail the test of calibration on some subpopulation, and perhaps
a different one for each v in the range of p̃. If one intends to use multicalibration as a certificate of
fairness for a prediction algorithm, then such behavior is clearly undesirable.

The next theorem shows that when C ⊆ {0, 1}X is closed under complement, the definitions
in this section are equivalent to those of the previous section up to a polynomial change in ε. The
proof is based on a simple application of Markov’s inequality that previously appeared in Gopalan
et al. (2022a).

Theorem 27 Assume O = {0, 1} and C ⊆ {0, 1}X is closed under complement. For each arrow
from Definition A to Definition B in Figure 3, Definition A with parameters (C, ε) implies Definition
B with parameters (C, εc) for sufficiently small ε > 0 and an absolute constant c ∈ (0, 1).

Proof We consider each of the six implications separately:

(1 =⇒ 24). If c = 1S ∈ C, then

|Pr[o∗i = 1 | i ∈ S]− Pr[õi = 1 | i ∈ S]| = |Pr[o∗i = 1, i ∈ S]− Pr[õi = 1, i ∈ S]|
Pr[i ∈ S]

.

The numerator of this fraction is at most δ
(
(ci, õi), (ci, o

∗
i )
)
, which, by Definition 1, is at most ε. If

the denominator satisfies Pr[i ∈ S] ⩾
√
ε, then the value of the fraction can be at most

√
ε. Thus,

Definition 1 with parameter ε implies Definition 24 with parameter
√
ε.

(2 =⇒ 25). For c = 1S ∈ C and v ∈ p̃(X ), consider the multicalibration violation

∇S,v =
∣∣∣Pr[o∗i = 1 | i ∈ S and p̃i = v]− v

∣∣∣ = δ
(
õi, o

∗
i | p̃i = v, i ∈ S

)
,

and observe that

E[∇S,p̃i ] = δ
(
(õi, p̃i), (o

∗
i , p̃i) | i ∈ S

)
⩽

δ
(
(ci, õi, p̃i), (ci, o

∗
i , p̃i)

)
Pr[i ∈ S]

.

By Definition 2, the numerator of this fraction is at most ε. If the denominator satisfies Pr[i ∈ S] ⩾
ε1/3, it follows that E[∇S,p̃i ] ⩽ ε2/3. Let S′ = {j ∈ S : ∇S,p̃j ⩽ ε1/3}. By Markov’s inequality,

Pr[i /∈ S′ | i ∈ S] ⩽
E[∇S,p̃i ]

ε1/3
⩽ ε1/3.
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Thus, Definition 2 with parameter ε implies Definition 25 with parameter ε1/3.

(3 =⇒ 26). Let V = {v ∈ p̃(X ) : maxc∈C δ
(
(ci, õi), (ci, o

∗
i ) | p̃i

)
⩽ ε2/3}. By Markov,

Pr[p̃i /∈ V ] ⩽
E
[
maxc∈C δ

(
(ci, õi), (ci, o

∗
i ) | p̃i

)]
ε2/3

,

which is at most ε1/3 by Definition 3. For c = 1S ∈ C and v ∈ V , we have

∇S,v = δ
(
õi, o

∗
i | p̃i = v, i ∈ S

)
⩽

δ
(
(ci, õi), (ci, o

∗
i ) | p̃i = v

)
Pr[i ∈ S | p̃i = v]

.

The numerator of this fraction is at most ε2/3 by construction of V . If the denominator satisfies
Pr[i ∈ S | p̃i = v] ⩾ ε1/3, then it follows that ∇S,v ⩽ ε1/3. Thus, Definition 3 with parameter ε
implies Definition 26 with parameter ε1/3.

(24 =⇒ 1). For c = 1S ∈ C, either Pr[i ∈ S] ⩽ ε or
∣∣Pr[õi | i ∈ S] − Pr[o∗i | i ∈ S]

∣∣ ⩽ ε by
Definition 24. Thus, their product satisfies

∣∣Pr[i ∈ S, o∗i = 1]− Pr[i ∈ S, õi = 1]
∣∣ ⩽ ε. Since C is

closed under complement, the same inequality holds with X \ S in place of S. It follows that

δ
(
(ci, õi), (ci, o

∗
i )
)
=
∣∣Pr[i ∈ S, o∗i = 1]−Pr[i ∈ S, õi = 1]

∣∣+∣∣Pr[i /∈ S, o∗i = 1]−Pr[i /∈ S, õi = 1]
∣∣

is at most 2ε. Thus, Definition 24 with parameter ε implies Definition 1 with parameter 2ε.

(25 =⇒ 2). For c = 1S ∈ C, we want to upper bound

δ
(
(ci, õi, p̃i), (ci, o

∗
i , p̃i)

)
= δ
(
(õi, p̃i), (o

∗
i , p̃i) | i ∈ S

)
Pr[i ∈ S]+δ

(
(õi, p̃i), (o

∗
i , p̃i) | i /∈ S

)
Pr[i /∈ S].

We will bound the two terms on the right side separately. By Definition 25, there exists S′ ⊆ S such
that Pr[i /∈ S′ | i ∈ S] ⩽ ε and and ∇S,p̃j ⩽ ε for all j ∈ S′. It follows that the first term satisfies

δ
(
(õi, p̃i), (o

∗
i , p̃i) | i ∈ S

)
Pr[i ∈ S] ⩽ Pr[i ∈ S \ S′] + E[∇S,p̃i | i ∈ S′] ⩽ 2ε.

Since C is closed under complement, we also have

δ
(
(õi, p̃i), (o

∗
i , p̃i) | i /∈ S

)
Pr[i /∈ S] ⩽ 2ε.

Thus, Definition 25 with parameter ε implies Definition 2 with parameter 4ε.

(26 =⇒ 3). Take V as in Definition 26. Then

E
[
max
c∈C

δ
(
(ci, õi), (ci, o

∗
i ) | p̃i

)]
⩽ Pr[p̃i /∈ V ] + E

[
max
c∈C

δ
(
(ci, õi), (ci, o

∗
i ) | p̃i

)
| p̃i ∈ V

]
.

By our choice of V , the first term satisfies Pr[p̃i /∈ V ] ⩽ ε. For v ∈ V , it remains to upper bound

δ
(
(ci, õi), (ci, o

∗
i ) | p̃i = v

)
= Pr[i ∈ S | p̃i = v]∇S,v + Pr[i /∈ S | p̃i = v]∇X\S,v.

We will bound the two terms on the right side separately. By our choice of V , either Pr[i ∈ S |
p̃i = v] ⩽ ε or ∇S,v ⩽ ε. Thus, their product satisfies Pr[i ∈ S | p̃i = v]∇S,v ⩽ ε. Similarly,
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Pr[i /∈ S | p̃i = v]∇X\S,v ⩽ ε. Thus, Definition 26 with parameter ε implies Definition 3 with
parameter 3ε.

Until this point, we have focused on the case O = {0, 1} and C ⊆ {0, 1}X . However, there are
other definitions of multi-calibration in the algorithmic fairness literature that apply to more general
sets O and C. One particularly noteworthy extension, introduced in Gopalan et al. Gopalan et al.
(2022a), applies to the case that O = {0, 1} and C ⊆ [0, 1]X . We include a rephrased statement
here:

Definition 28 Assume O = {0, 1} and C ⊆ [0, 1]X . We say p̃ satisfies covariance-based (C, ε)-
multi-calibration if

E
∣∣Cov(ci, o∗i | p̃i)∣∣ ⩽ ε

for all c ∈ C.

Rather than measuring the statistical distance between (ci, õi) and (ci, o
∗
i ) given p̃i as we do,

this definition measures the absolute value of the covariance of ci and o∗i given p̃i. We conclude this
section by showing that our version of multi-calibration is at least as strong as this covariance-based
version whenever both are applicable.

Theorem 29 Assume O = {0, 1} and C ⊆ [0, 1]X . If p̃ is (C, ε)-multi-calibrated, then p̃ also
satisfies covariance-based (C, ε)-multi-calibration.

Proof Fix c : X → [0, 1] and let Y ⊆ [0, 1] be the range of c. Since we assume X is finite, so is Y .
Some straightforward algebra shows that

Cov(ci, o
∗
i | p̃i) =

∑
y∈Y

(
y − 1

2

)(
Pr[ci = y, o∗i = 1 | p̃i] +Pr[ci = y | p̃i]Pr[õi = 1 | p̃i]
−Pr[ci = y, õi = 1 | p̃i] −Pr[ci = y | p̃i]Pr[o∗i = 1 | p̃i]

)
.

We will split the above expression into a sum of two parts and bound the expected absolute value of
each. First, because |y − 1/2| ⩽ 1/2 for each y ∈ Y and p̃ is (C, ε)-multi-calibrated, we have

E

∣∣∣∣∣∣
∑
y∈Y

(
y − 1

2

)(
Pr[ci = y, o∗i = 1 | p̃i]− Pr[ci = y, õi = 1 | p̃i]

)∣∣∣∣∣∣ ⩽ 1

2
E[δ
(
(ci, o

∗
i ), (ci, õi) | p̃i

)
] ⩽

ε

2
.

Using the additional fact that
∑

y∈Y Pr[ci = y | p̃i] = 1, we see that

E

∣∣∣∣∣∣
∑
y∈Y

(
y − 1

2

)
Pr[ci = y | p̃i]

(
Pr[õi = 1 | p̃i]− Pr[o∗ = 1 | p̃i]

)∣∣∣∣∣∣ ⩽ 1

2
E[δ
(
õi, o

∗
i | p̂i

)
] ⩽

ε

2
.

By the triangle inequality, we conclude that

E
∣∣Cov(ci, o∗i | p̃i)∣∣ ⩽ ε

2
+

ε

2
,

so p̃ satisfies covariance-based (C, ε)-multi-calibration.
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Appendix E. Omniprediction

In this section, we show how our new, statistical distance-based notions of multiaccuracy and mul-
ticalibration lend themselves naturally to applications by giving a remarkably simple extension of
a state-of-the-art result in omniprediction to the multiclass setting. We will also extend the concept
of omniprediction to consider loss functions that may depend on information of individuals. We
remark that while our theorems hold whether the functions c ∈ C are discrete or continuous, they
are only operationalizable for discrete-valued functions.

A concept introduced by Gopalan et al. (2022a), an omnipredictor is a single predictor capa-
ble of minimizing a wide range of loss functions ℓ ∈ L while achieving competitive performance
against a large class of hypotheses c ∈ C. Informally speaking, the original omniprediction theorem
Gopalan et al. (2022a) showed that any predictor p̃ satisfying an appropriate multicalibration condi-
tion must also be an omnipredictor for all convex, Lipschitz, and bounded loss functions. However,
a recent work Gopalan et al. (2023a) made significant strides by relaxing the assumptions of this
theorem while strengthening its conclusion. The stronger version of the omniprediction theorem in
Gopalan et al. (2023a) only assumes that p̃ is multiaccurate and calibrated (not multicalibrated) and
establishes omniprediction even for non-convex loss functions.

In what follows, let C, as usual, be a collection of functions c : X → Y , which we now call
hypothesis functions. Also, let L be a collection of loss functions ℓ : Y × O → [0, 1]. Note that
each loss function ℓ takes as input both an outcome o ∈ O and an action y ∈ Y . It outputs a real
number between 0 and 1 measuring the cost of choosing action y when the outcome is o. Also,
consider the following notion of post-processing a prediction to minimize a loss function, which we
have modified slightly from its form in Gopalan et al. (2022a, 2023a).

Definition 30 Say that postℓ : ∆O → Y is a post-processing function for the loss ℓ ∈ L if

postℓ(v) ∈ argmin
y∈Y

E
o∼v

[ℓ(y, o)]

for each distribution v ∈ ∆O. For ease of notation, we also write vℓ = postℓ(v).

We now recall the definition of an omnipredictor.

Definition 31 Say that p̃ : X → ∆O is a (L, C, ε)-omnipredictor if

E[ℓ(p̃ℓi , o
∗
i )] ⩽ E[ℓ(ci, o∗i )] + ε

for all ℓ ∈ L and c ∈ C.

In order to state the theorem of interest, we first emphasize an important special case of the
definition of multicalibration in Section 3:

Definition 32 A predictor p̃ is ε-calibrated if (õi, p̃i) ≈ε (o
∗
i , p̃i).

Indeed, a predictor is ε-calibrated if and only if it is ({1X }, ε)-multicalibrated. We these def-
initions in hand, we are ready to present the main proof of this section. For clarity, we will first
consider the special case that ε = 0.

The following two lemmas will be of use. The first says that calibrated predictions, even when
post-processed, incur the same loss on real outcomes as on modeled outcomes.
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Lemma 33 If p̃ is 0-calibrated, f : ∆O → Y is any function, and ℓ ∈ L, then

E [ℓ(f(p̃i), o
∗
i )] = E [ℓ(f(p̃i), õi)] .

Proof 0-calibration means that (õi, p̃i) and (o∗i , p̃i) have the same joint distribution.

The second lemma says that c : X → Y incurs the same loss on real outcomes as on modeled
outcomes if the predictor is (C, 0)-multiaccurate.

Lemma 34 If p̃ is (C, 0)-multiaccurate, then

E[ℓ(ci, o∗i )] = E[ℓ(ci, õi)]

for all ℓ ∈ L and c ∈ C.

Proof (C, 0)-multiaccuracy means that (ci, o∗i ) and (ci, õi) have the same joint distribution.

We now state and prove a rephrased version of one of the main theorems of Gopalan et al.
(2023a) in terms of our new language. In Gopalan et al. (2023a), the assumption of the theorem is
that p̃ is multiaccurate with respect to all [0, 1]-bounded functions of the level sets of each c ∈ C.
In our statement of the theorem, these criteria are encapsulated naturally by our statistical distance-
based formulation of multiaccuracy:

Theorem 35 If p̃ is ε1-calibrated and (C, ε2)-multiaccurate, then p̃ is an (L, C, ε1+ε2)-omnipredictor.

Proof First consider the case that ε1 = ε2 = 0. Since p̃ℓi is a function of p̃i, we have

E[ℓ(p̃ℓi , o
∗
i )] = E[ℓ(p̃ℓi , õi)] by Lemma 33,

⩽ E[ℓ(ci, õi)] by Definition 30,

= E[ℓ(ci, o∗i )] by Lemma 34.

In the general case, standard properties of statistical distance ensure that the two expectation terms
in Lemma 33 now differ by at most ε1, and the two expectation terms in Lemma 34 now differ
by at most ε2. Here, we have used the assumption that the range of each ℓ ∈ L is bounded be-
tween 0 and 1. Adding these two slack terms to the first and third lines, respectively, of the above
calculation yields

E[ℓ(p̃ℓi , o
∗
i )] ⩽ E[ℓ(ci, o∗i )] + ε1 + ε2,

so p̃ is an (L, C, ε1 + ε2)-omnipredictor.

For the sake of comparison, we also include a version of the original omniprediction proof of
Gopalan et al. (2022a) in our current language. For simplicity, we only state the case of ε1 = ε2 = 0
but remark that additional Lipschitzness assumptions on L would be required in the case of ε1, ε2 >
0.

Theorem 36 Assume O = {0, 1} and Y ⊆ [0, 1]. If p̃ satisfies covariance-based (C, 0)-multi-
calibrated and each ℓ ∈ L is convex in its first input, then p̃ is an (L, C, 0)-omnipredictor.
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Proof Rephrasing the proof from Gopalan et al. (2022a) yields:

E[ℓ(p̃ℓi , o
∗
i )] = E[ℓ(p̃ℓi , õi)] by Lemma 33

⩽ E[ℓ(E[ci | p̃i], õi)] by Definition 30

= E[ℓ(E[ci | p̃i], o∗i )] by Lemma 33

= E[ℓ(E[ci | p̃i, o∗i ], o∗i )] by Definition 28

⩽ E[ℓ(ci, o∗i )] by convexity of ℓ(−, 0) and ℓ(−, 1).

In the second equality, we use the fact that E[ci | p̃i] is a function of p̃i. In the third equality, we
used the fact that E[ci | p̃i] = E[ci | p̃i, o∗i ] (i.e., that ci and o∗i are conditionally uncorrelated given
p̃i). This is by definition of covariance-based (C, 0)-multi-calibration.

E.1. Loss Functions Dependent on Information of Individuals

So far the concept of omniprediction considers loss functions ℓ depending on an action y ∈ Y and
outcome o ∈ O. In this section, we extend the notion to consider loss functions that may depend
on additional information about an individual, that is, the loss ℓ(y, o, z) also depend on information
z ∈ T of an individual i w.r.t. whom the action y and outcome o are associated with. Here, we
can consider different relevant information z about an individual captured by a class of functions
Z = {z : X → T }. Now omniprediction w.r.t. loss functions L, hypotheses C, and auxiliary
information functions Z should guarantee that the predictor p̃ has competitive performance against
hypotheses in C, in minimizing a large class of losses w.r.t. expressive information of individuals.

To formally state the result, we first slightly rephrase the setting of omniprediction. In prior
works and above, we compare the loss incurred using an action, yi = postℓ(p̃i), derived from
postprocessing the predicted outcome distribution p̃i, with loss incurred using actions ci prescribed
by a hypothesis c ∈ C. The postprocessing function post (Definition 30) ensures that yi is Bayes
optimal w.r.t. the composed function ℓ′(p, o) = ℓ(postℓ(p), o), in the sense that the expectation of ℓ′

on input o drawn from a distribution p∗ is minimized when when the true probability distribution p∗

is given as the input — namely, p∗ = argminp∈∆O Eo∼p∗ [ℓ
′(p, o)]. We say that such loss functions

are Bayes optimal. Then we can equivalently state previous results w.r.t. a class of Bayes optimal
loss functions L′ and a hypothesis class C mapping individuals in X to outcome distributions ∆O
(instead of actions). Next, we describe our extension formally in this setting.

Definition 37 Let L be a collection of loss functions ℓ : Y × O × T → [0, 1]. We say that L is
ε-Bayes optimal if every ℓ ∈ L satisfies that

∀z ∈ T , p∗, p ∈ ∆O, E
o∼p∗

[ℓ(p∗, o, z)] ⩽ E
o∼p∗

[ℓ(p, o, z)] + ε

We now extend the definition of an omnipredictor. Let C be a collection of hypothesis from X
to ∆O, and Z be a collection of auxiliary information functions from X to T .

Definition 38 Say that p̃ : X → ∆O is a (L, C,Z, ε)-omnipredictor if

E[ℓ(p̃i, o∗i , zi)] ⩽ E[ℓ(ci, o∗i , zi)] + ε

for all ℓ ∈ L, c ∈ C, and z ∈ T .
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We show that our simple proof of omniprediction in the previous section can be easily adapted to
accommodate the richer class of loss functions we consider. The main difference is that we now need
the predictor p̃ to be multicalibrated w.r.t. Z and multiaccurate w.r.t. C||Z = {c||z : c ∈ C, z ∈ Z}.

Theorem 39 LetL be a collection of ε3-Bayes optimal loss functions. If p̃ is (Z, ε1)-multicalibrated
and (C||Z, ε2)-multiaccurate, then p̃ is an (L, C,Z, ε1 + ε2 + ε3)-omnipredictor.

Proof First consider the case that ε1 = ε2 = ε3 = 0. We have

E[ℓ(p̃i, o∗i , zi)] = E[ℓ(p̃i, õi, zi)] by Definition 2 and p̃ is multicalibrated w.r.t. Z ,

⩽ E[ℓ(ci, õi, zi)] by Definition 37,

= E[ℓ(ci, o∗i , zi)] by Lemma 34 and p̃ is multiaccruate w.r.t. C||Z .

In the general case, standard properties of statistical distance ensure that the first and third equality
of expectation terms differ by at most ε1 and ε2 (using the fact that the range of each ℓ ∈ L is
bounded between 0 and 1). The right hand side of the second inequality has an additional ε3 term
by definition of Bayes optimality of L. Therefore, we obtain

E[ℓ(p̃i, o∗i , zi)] ⩽ E[ℓ(ci, o∗i , zi)] + ε1 + ε2 + ε3,

so p̃ is an (L, C,Z, ε1 + ε2 + ε3)-omnipredictor.

Appendix F. Outcome Indistinguishability via No-Regret Learning

In this section, we present an algorithmic template that unifies two existing algorithms for achiev-
ing outcome indistinguishability (and hence multicalibration), through the lens of no-regret learn-
ing. Previously, in Section 5, we saw that an instantiation of the template yields algorithms with
improved upper bounds on the sample complexity of multicalibration.

The two algorithms under consideration are similar in that both make iterative updates to an
arbitrary initial predictor p̃. However, they differ in their implementations of the update rule. The
first update rule selects A ∈ A that successfully distinguishes p̃ from p∗ with advantage ε, and
makes an additive update to p̃ resembling projected gradient descent Hébert-Johnson et al. (2018);
Dwork et al. (2021). The second update rule also selects a distinguisher, but instead updates p̃ in a
multiplicative manner Kim et al. (2019).

To establish the claimed connection, we will first show in Appendix F.1 that the described
algorithmic template can be instantiated with any update rule based on an algorithm with a no-regret
guarantee. We will then discuss in Appendix F.2 how projected gradient descent and multiplicative
weight updates can be viewed as instances of mirror descent, an algorithm with exactly the required
no-regret guarantee. One benefit of this unified presentation via no-regret learning is that prior
works require separate analyses for the two algorithms, but we only need a single, very simple,
proof, relying only on the no-regret guarantee. We will also examine the relative merits of using
projected gradient descent versus multiplicative weight updates for this role. (In brief, multiplicative
weight updates work better in the multiclass setting, but projected gradient descent is more robust
to a poor initialization.)
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F.1. No-Regret Updates

We first recall the general framework of no-regret online learning. Consider T rounds of gameplay
between two players, called the decision-maker and the adversary. In each round, the decision-
maker chooses a mixed strategy (i.e., a probability distribution) over a finite set O of available pure
strategies. In response, the adversary adaptively chooses a loss function, which assigns an arbitrary
numeric loss between 0 and 1 to each to each available pure strategy. At the end of the round,
the decision-maker incurs a penalty equal to the expected loss of its chosen mixed strategy, while
learning the entire description of the loss function (not just the penalty it incurred).

Intuitively, a decision-making algorithm satisfies a no-regret guarantee if the overall expected
loss of a decision-maker employing the algorithm is no worse than the penalty the decision-maker
would have incurred by playing any particular pure strategy against the same sequence of loss
functions.

We now state a formal definition of no-regret learning. For simplicity, we focus our attention
on decision-making algorithms whose strategy in round t + 1 is completely determined by what
happened in round t, but this assumption is easy to relax.

Definition 40 A decision-making algorithm is specified by a distribution D(1) ∈ ∆O and a function
update : ∆O × [0, 1]O → ∆O. We say it satisfies a (T, ε)-no-regret guarantee if

1

T

T∑
t=1

E
o∼D(t)

[
L(t)(o)

]
⩽

1

T

T∑
t=1

L(t)(o∗) + ε

for every pure strategy o∗ ∈ O, every sequence of loss functions L(1), . . . , L(T ) ∈ [0, 1]O, and the
sequence of distributions D(t) ∈ ∆O given by D(t+1) = update(D(t), L(t)).

Example 1 The projected gradient descent and multiplicative weight update rules are

D(t+1) = proj∆O

(
D(t) − ηL(t)

)
,

D(t+1)(o) =
D(t)(o)e−ηL(t)(o)∑

o′∈O D(t)(o′)e−ηL(t)(o′)
,

respectively, for a parameter η > 0 called the step size.

We will state the standard no-regret guarantees for these update rules, along with appropriate
initializations, in Appendix F.2.

Algorithm 2 shows how to achieve outcome indistinguishability via no-regret updates. Indeed,
Algorithm 2 can be viewed as running |X | instances of a no-regret algorithm in parallel. Each
instance corresponds to one member j of the population X , and the distribution p̃j corresponds to a
mixed strategy over o ∈ O. The predicted probabilities p̃j(o) are refined over multiple rounds.

The most important question is how the loss function is chosen in each round. Toward the
goal of outcome indistinguishability against A, given the current predictor p̃, the algorithm finds a
distinguisher A ∈ A that has relatively high distinguishing advantage with respect to p̃. Such an
adversary naturally defines a loss for each individual-outcome pair as follows:

Lj(o) = A(j, o, p̃).

27



DWORK LEE LIN TANKALA

We emphasize that though the no-regret algorithm is run separately for each member of X , the
choice of the distinguisher (and hence the loss functions) depends on the entire predictor p̃. Fur-
thermore, it suffices to find a distinguisher with relatively high advantage as opposed to maximal
advantage.

Finally, if X is very large, it may be infeasible to run a separate instance of the no-regret algo-
rithm for each j ∈ X . This is not a problem because the collection of values p̃j(o) is implicitly
defined by the distinguishers A found in each round, which in turn give an efficient representation
of the predictor p̃ as a whole.

Algorithm 2: Outcome Indistinguishability with No-Regret Updates

def Construct-via-No-Regret(p̃,A, ε, update):
for A ∈ A do

// check for (A, ε)-OI violation
if E [A(i, õi, p̃)] > E [A(i, o∗i , p̃)] + ε then

for j ∈ X do
for o ∈ O do

// define loss function
Lj(o)← A(j, o, p̃)

end
// no-regret update
p̃′j ← update(p̃j , Lj)

end
// recurse
return Construct-via-No-Regret(p̃′,A, ε, update)

end
end
return p̃

end

Theorem 41 Suppose A is closed under negation, meaning that A ∈ A iff 1 − A ∈ A, and that
the function update satisfies a (T, ε)-no-regret guarantee when initialized at p ∈ ∆O. Set p̃j = p
for each j ∈ X . Then CONSTRUCT-VIA-NO-REGRET(p̃,A, ε, update) returns an (A, ε)-outcome-
indistinguishable predictor in under T recursive calls.

Proof Let p̃(t) denote the argument to the tth recursive call (e.g., p̃(1) = p̃), let õ(t)i ∈ O be a
random variable whose conditional distribution given i is specified by p̃i, and suppose toward a
contradiction that T or more recursive calls are made. The no-regret guarantee implies that

1

T

T∑
t=1

(
E
[
A(i, õ

(t)
i , p̃(t))

]
− E

[
A(i, o∗i , p̃

(t))
])

⩽ ε.

By design, if the algorithm does not terminate in T recursive calls, then each summand on the
left is greater than ε, which leads to a contradiction. Thus, CONSTRUCT-VIA-NO-REGRET always
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returns some predictor in under T recursive calls, which the stopping condition clearly ensures is
(A, ε)-outcome-indistinguishable.

F.2. Mirror Descent Updates

In this section, we explain how projected gradient descent and multiplicative weight updates fit into
the framework of no-regret learning and compare their advantages when used as the update rule
in Algorithm 2. These two implementations of Algorithm 2 are typically analyzed by tracking a
potential function measuring the “divergence” of a predictor p̃ from the ground truth p∗ as updates
to p̃ are made. The mirror descent perspective that we adopt in this section will clarify which
“divergence” functions can be used in such an argument to derive a no-regret guarantee, while
giving convergence rates for the corresponding update rules.

F.2.1. BACKGROUND

To begin, we state without proof some basic properties about the two algorithms under consider-
ation. For more detail, we refer the reader to texts on convex optimization Bubeck (2015); Ne-
mirovsky and Yudin (1983).

• Projected Gradient Descent Let K ⊂ Rn be a convex and compact constraint set. Then for
any initialization x1 ∈ K and sequence y1, y2, . . . ∈ Rn, the update rule

xt+1 = projK(xt − ηyt)

with step size η > 0 satisfies the regret bound

T∑
t=1

⟨yt, xt − x⟩ ⩽ ∥x− x1∥22
2η

+
η

2

T∑
t=1

∥yt∥22

for all T ∈ N and x ∈ K. Here, ∥ · ∥p denotes the p-norm.

• Multiplicative Weight Updates Let ∆n−1 = {w ∈ [0, 1]n : ∥w∥1 = 1}. Then for any
initialization x1 ∈ ∆n−1 ∩ Rn

>0 and sequence y1, y2, . . . ∈ Rn, the update rule

xt+1,j ∝ xt,j exp(−ηyt,j), xt+1 ∈ ∆n−1

with step size η > 0 satisfies the regret bound

T∑
t=1

⟨yt, xt − x⟩ ⩽ DKL (x∥x1)
η

+
η

2

T∑
t=1

∥yt∥2∞

for all T ∈ N and x ∈ ∆n−1. Here, DKL denotes the Kullback-Leibler divergence and ∥ · ∥∞
denotes the maximum norm.

• Mirror Descent Let ∥ · ∥ and ∥ · ∥∗ be dual norms on a finite-dimensional vector space V
and its dual V ∗, and let D be the Bregman divergence associated with a mirror map that is
1-strongly convex with respect to ∥ · ∥ on Ω ⊆ V . Let K ⊂ Ω be a convex and compact
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constraint set. Then for any initialization x1 ∈ K ∩ Ω and sequence y1, y2, . . . ∈ V ∗, the
update rule

xt+1 = argmin
x∈K∩Ω

⟨yt, x⟩+
D(x, xt)

η

with step size η > 0 is well-defined and satisfies the regret bound

T∑
t=1

⟨yt, xt − x⟩ ⩽ D(x, x1)

η
+

η

2

T∑
t=1

∥yt∥2∗

for all T ∈ N and x ∈ K. Here, ⟨y, x⟩ denotes the real number y(x).

The general update rule may be interpreted as selecting xt+1 that responds well to yt without
moving too far away from xt, as enforced by the penalty term D(xt+1, xt)/η.

• Relationships One can show that projected gradient descent is a special case of mirror descent
with ∥·∥ = ∥·∥∗ = ∥·∥2 on Rn and D(p, q) = 1

2∥p−q∥
2
2 on Ω = Rn. Similarly, one can show

that the multiplicative weights algorithm is a special case of mirror descent with ∥ · ∥ = ∥ · ∥1
and ∥ · ∥∗ = ∥ · ∥∞ on Rn and K = ∆n−1 and D(p, q) = DKL(p∥q) =

∑n
j=1 pj log(pj/qj)

on Ω = Rn
>0.

F.2.2. APPLICATION TO OI

Using the above notation, let K = ∆O and L = maxf :O→[0,1] ∥f∥∗. Algorithm 3 specializes
Algorithm 2 to the case of mirror descent updates, which includes projected gradient descent and
multiplicative weight updates. In the pseudocode for Algorithm 3, the expression Eo∼p[A(j, o, p̃)]
should be read as

∑
o∈O p(o)A(j, o, p̃).

Algorithm 3: Outcome Indistinguishability with Mirror Descent Updates

def Construct-via-Mirror-Descent(p̃,A, ε,D, η):
for A ∈ A do

// check for (A, ε)-OI violation
if E [A(i, õi, p̃)] > E [A(i, o∗i , p̃)] + ε then

for j ∈ X do
// mirror descent update
p̃′j ← argminp∈∆O Eo∼p [A(j, o, p̃)] +D(p, p̃j)/η

end
// recurse
return Construct-via-Mirror-Descent(p̃′,A, ε,D, η)

end
end
return p̃

end
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Theorem 42 CONSTRUCT-VIA-MIRROR-DESCENT(p̃,A, D, ε, η) with step size η = ε/L2 re-
turns an (A, ε)-outcome-indistinguishable predictor in under

2

(
L

ε

)2

E[D(p∗i , p̃i)]

recursive calls, where p∗i denotes the conditional distribution of o∗i given i.

Proof Let p̃(t) denote the argument to the tth recursive call (e.g., p̃(1) = p̃), and let õ(t)i ∈ O be a
random variable whose conditional distribution given i is specified by p̃i. The mirror descent regret
bound implies that

T∑
t=1

(
E
[
A(i, õ

(t)
i ; p̃(t))

]
− E

[
A(i, o∗i ; p̃

(t))
])

⩽
E[D(p∗i , p̃i)]

η
+

ηTL2

2
.

By design, each summand on the left is greater than ε, which leads to a contradiction if the step size
is η = ε/L2 and there are T ⩾ 2(L/ε)2 E[D(p∗i , p̃i)] calls. Thus, CONSTRUCT-VIA-MIRROR-DESCENT

always returns some predictor, which the stopping condition clearly ensures is (A, ε)-outcome-
indistinguishable.

Example 2 Using projected gradient descent yields L =
√
|O| and a bound of

|O|E
[
∥p∗i − p̃i∥22

]
ε2

⩽
2|O|
ε2

on the number of recursive calls. In the binary case, i.e., O = {0, 1}, the update rule satisfies

p̃′j(1)← proj[0,1]

(
p̃j(1)−

η

2
(A(j, 1, p̃)−A(j, 0, p̃))

)
,

which agrees with the original outcome indistinguishability algorithm Dwork et al. (2021).

Example 3 Using multiplicative weight updates yields L = 1 and a bound of 2ε−2 E[DKL(p
∗
i ∥p̃i)]

on the number of recursive calls. If we initialize p̃j to the uniform distribution on O for all j ∈ X ,
then this bound reduces to 2ε−2 log(|O|), which has a better dependence on |O| than the bound for
projected gradient descent but allows less flexibility in the initialization of p̃.

The original analyses of the generic multicalibration and outcome indistinguishability algo-
rithms are not phrased in terms of no-regret bounds like our proofs of Theorems 41 and 42. Instead,
they track changes to a potential function as p̃ is iteratively updated. In our proof of Theorem 42,
this potential function corresponds exactly to the quantity E[D(p∗i , p̃i)].

F.3. Weak Agnostic Learning

To prepare for the discussion of our new complexity upper bounds, we now present a variant of
Algorithm 2 that abstracts the process of finding a distinguisher A ∈ A that distinguishes real
from modeled outcomes with advantage ε. The abstraction we consider is based on that of a weak
agnostic learner, which appeared in the original paper on multi-group fairness Hébert-Johnson et al.
(2018).
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Algorithm 4: Outcome Indistinguishability via Weak Agnostic Learning

def Construct-via-WAL(ε, p̃,WALA, update):
A←WALA(ε, p̃) // check for (A, ε)-OI violation
if A = ⊥ then

return p̃
end
for j ∈ X do

for o ∈ O do
Lj(o)← A(j, o, p̃) // define loss function

end
p̃′j ← update(p̃j , Lj) // no-regret update

end
return Construct-via-WAL(ε, p̃′,WALA, update) // recurse

end

Definition 43 Let WALA be an algorithm that takes as input a parameter ε > 0 and a predictor p̃
and outputs either a distinguisher A ∈ A or the symbol ⊥. We assume that WALA has the ability
to draw data samples that are i.i.d. copies of (i, o∗i ). We say that WALA is a weak agnostic learner
with failure probability β if the following two conditions hold:

• If there exists A ∈ A such that ∆A(p̃) := E[A(i, õi, p̃)]−E[A(i, o∗i , p̃)] > ε, then WALA(ε, p̃)
outputs A′ ∈ A such that ∆A′(p̃) > ε/2 with probability at least 1− β.

• If every A ∈ A satisfies ∆A(p̃) ⩽ ε, then WALA(ε, p̃) outputs either A′ ∈ A such that
∆A′(p̃) > ε/2 or ⊥ with probability at least 1− β.

A simple application of Hoeffding’s inequality and a union bound yields the following lemma.

Lemma 44 For every family A of distinguishers, there exists a weak agnostic learning algorithm
WALA with failure probability β that draws at most O

(
log(|A|/β)/ε2

)
on input ε and p̃.

Algorithm 4 shows how to utilize WALA as a subroutine for achieving outcome indistinguisha-
bility.

Theorem 45 If A is closed under complement, then there exists an algorithm WALA, an al-
gorithm update, and an initialization of p̃ such that with probability at least 1 − β, the algo-
rithm CONSTRUCT(ε, p̃,WALA, update) returns an (A, ε)-outcome-indistinguishable predictor in
at most log(ℓ)/ε2 recursive calls and using at most log(ℓ) log(|A|/β)/ε4 samples, where ℓ = |O|.

Proof The proof of Theorem 42 and Example 3, along with the two properties in Definition 43,
gives a O(log(ℓ)/ε2) upper bound on the number of updates. Lemma 44 upper bounds the number
of samples needed per update. Choosing β appropriately and applying a union bound over the entire
sequence of updates yields the claimed sample complexity upper bound.
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F.4. Proofs for Section 5

Proof of Theorem 8 Throughout this proof, and for the remainder of this section, let

∆A(p̃) =
∣∣∣E [A(i, õi, p̃)]− E [A(i, o∗i , p̃)]

∣∣∣
for a distinguisher A ∈ A and predictor p̃ : X → ∆O.We say that Algorithm 1 performs an
update in iteration s if it reaches the line “changed ← true” during iteration s of the outermost
for-loop. We claim that the “exhaustive search” over A ∈ A in the algorithm correctly implements
the weak agnostic learning step described in Appendix F.3. Indeed, a standard application of a
Chernoff bound and union bound shows that for an appropriately chosen number n ≲ log(|A|t)/ε2
of samples per iteration, the following two properties hold with probability at least 99% across all
iterations s ∈ {0, 1, . . . , t− 1}:

(a) If some A ∈ A satisfies ∆A(p̃
(s)) > ε, then the algorithm performs an update in iteration s.

(b) If the algorithm performs an update in iteration s using A(s) ∈ A, then ∆A(s)(p̃(s)) > ε/3.

Since the algorithm only outputs p̃ ̸= ⊥ after an iteration when no update was performed, prop-
erty (a) immediately implies that such a predictor p̃ must be (A, ε)-outcome-indistinguishable. It
remains to show that Algorithm 1 will never output ⊥ for an appropriate value t ≲ log(|O|)/ε2.
However, this follows immediately from property (b) and Example 3.

Proof of Theorem 10 Observe that the family AMC
C,G has size 2|Y||O||G||C|. By Lemma 23, we can

choose an η-covering G of ∆O in such a way that |G| < (3/η)ℓ−1. Thus, by Lemma 8, Algorithm 1
with inputAMC

C,G and parameters ε/4 and η = 3ε/4 outputs a (AMC
C,G , ε/4)-outcome-indistinguishable

predictor p̃ with probability at least 99% using at most

tn ≲

(
log(|C|) + |Y||O|

(
4

ε

)|O|−1
)
· log(|O|)

ε4

samples. Since G is an η-covering of ∆O, the inequality δ(ôi, õi | i) ⩽ η holds almost surely, so

δ
(
(ci, ôi, p̂i), (ci, o

∗
i , p̂i)

)
⩽ δ
(
(ci, õi, p̂i), (ci, o

∗
i , p̂i)

)
+ η.

The first term is at most ε/4 by the definition of statistical distance and (AMC
C,G , ε/4)-outcome-

indistinguishability of p̃, so the right hand side is at most ε. We conclude that the discretized
predictor p̂ is (C, ε)-multicalibrated.

Proof of Theorem 12 A standard counting argument shows that the familyAMC
C,k has size

(
k+ℓ−1
ℓ−1

)
ℓ|C|.

Thus, by Lemma 8, Algorithm 1 with input AMC
C,G and parameters ε/4 and η = 3ε/4 outputs a

(AMC
C,k , ε)-outcome-indistinguishable predictor p̃ with probability at least 99% using at most

tn ≲

(
log(|C|) + k log

(
ℓ

k

)
+ log

(
ℓ

ε

))
· log(ℓ)

ε4

samples. By definition, such a predictor p̃ is (C, ε)-degree-k multicalibrated.
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Strict Multicalibration To conclude this section, we also give an upper bound on the sample
complexity of strict multicalibration.

Definition 46 Let ASMC
C,G =

{
Ac,E | c ∈ CG , E ⊆ Y ×O × G

}
, where

Ac,E(j, o, p̃) = 1[(c(p̂j)j , o, p̂j) ∈ E]

for each member j ∈ X , possible outcome o ∈ O, and predictor p̃ : X → ∆O.

Theorem 47 Running Algorithm 1 on A = ASMC
C,G and appropriately chosen G, t, n yields a pre-

dictor p̃ such that p̂ is strictly (C, ε)-multicalibrated with probability at least 99%. The algorithm
samples at most

tn ≲ (log(|C|) + |Y||O|) ·
(
4

ε

)|O|−1

· log(|O|)
ε4

i.i.d. individual-outcome pairs.

Proof Observe that the family ASMC
C,G has size 2|Y||O||G||C||G|. By Lemma 23, we can choose an

η-covering G of ∆O in such a way that |G| < (3/η)ℓ−1. Thus, by Lemma 8, Algorithm 1 with
input ASMC

C,G and parameters ε/4 and η = 3ε/4 outputs a (ASMC
C,G , ε/4)-outcome-indistinguishable

predictor p̃ with probability at least 99% using at most

tn ≲ (log(|C|) + |Y||O|) ·
(
4

ε

)|O|−1

· log(|O|)
ε4

samples. Since G is an η-covering of ∆O, the inequality δ(ôi, õi | i) ⩽ η holds almost surely, so

E
[
max
c∈C

δ
(
(ci, ôi), (ci, o

∗
i ) | p̂i

)]
⩽ E

[
max
c∈C

δ
(
(ci, õi), (ci, o

∗
i ) | p̂i

)]
+ η.

The expectation on the right hand side is at most ε/4 by the definition of statistical distance and
(ASMC

C,G , ε/4)-outcome-indistinguishability of p̃, so the right hand side is at most ε. We conclude
that the discretized predictor p̂ is strictly (C, ε)-multicalibrated.

F.5. Improvements in Special Cases

In the case that C ⊆ {0, 1}X , we can refine Theorem 10 so that its bound depends on the Vap-
nik–Chervonenkis dimension VC(C) of C instead of the logarithm of the cardinality of C. To do
so, we first state some definitions and lemmas that follow directly from basic properties of VC
dimension that can be found in standard texts Shalev-Shwartz and Ben-David (2014).

Definition 48 For finite sets S and H ⊆ {0, 1}S , the VC dimension VC(H) of H is the size of
the largest subset T ⊆ S such that every possible function T → {0, 1} is the restriction of some
function in H. Such a set T is said to be shattered by H. Given a family A of distinguishers and
a predictor p̃, we write VC(Ap̃) to denote the VC dimension of the collection Ap̃ ⊆ {0, 1}X×O of
functions Ap̃ : X ×O → {0, 1} given by Ap̃(j, o) = A(j, o, p̃) for A ∈ A.
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Lemma 49 For every family A of distinguishers and every ε > 0, there exists a weak agnostic
learning algorithm WALA,ε with failure probability β that draws at most O

(
(VC(Ap̃) + log(1/β))/ε2

)
samples.

With these tools in hand, we now state and prove the main result of this section.

Theorem 50 Fix C ⊆ {0, 1}X and let ℓ = |O|. There is an algorithm that takes as input

O

(
VC(C) + ℓ

(
4

ε

)ℓ−1
)
· log(ℓ)

ε4

i.i.d. individual-outcome pairs and outputs a strictly (C, ε)-multicalibrated predictor w.p. 99%.

Proof Given C, G, and E ⊆ {0, 1} × O × G, let AMC
C,G,E = {Ac,E | c ∈ C} where

Ac,E(j, o, p̃) = 1[(cj , o, p̂j) ∈ E]

for each member j ∈ X , possible outcome o ∈ O, and predictor p̃ : X → ∆O. Note that

AMC
C,G,p̃ =

⋃
E

AMC
C,G,E,p̃,

where the union is taken over all 22|O||G| possible choices of E. We claim that

VC
(
AMC

C,G,E,p̃

)
⩽ VC(C)

for any E and any predictor p̃. Once this is shown, it will follow from Lemma 49 with failure prob-
ability β/22|O||G| and a union bound over the choice of E that there exists a weak agnostic learning
algorithm WALAMC

C,G ,ε
with failure probability β that uses only O

(
(VC(C) + log(22|O||G|/β))/ε2

)
samples. Proceeding as in the proof of Lemma 45 and Theorem 10 yields the desired sample com-
plexity bound.

It remains to prove the claim. To this end, fix E and p̃ and let T = {(j1, o1), . . . , (jd, od)} ⊆
X×O be a maximum size set shattered byAMC

C,G,E,p̃. Consider the element (jd, od) ∈ T . In order for
there to exist two distinguishers Ac,E and Ac′,E such that Ac,E(jd, od, p̃) = 0 and Ac′,E(jd, od, p̃) =
1, it must be the case that c(jd) ̸= c′(jd), or else we would have Ac,E(jd, od, p̃) = Ac′,E(jd, od, p̃).
More generally, if the restrictions of Ac,E and Ac′,E to T are distinct, then the restrictions of c
and c′ to {j1, . . . , jd} must also be distinct. Since the distinguishers shatter T , it follows that
{j1, . . . , jd} ⊆ X is shattered by C and hence that d ⩽ VC(C). This completes the proof of the
claim.

F.6. A Randomized Approach

In this section, we give a variant of Theorem 10 using an alternate algorithm for achieving mul-
ticalibration in the case that C ⊆ {0, 1}X that we believe may be of interest. We will present
the algorithm in this section with a slightly simpler notion of weak agnostic learning than in the
preceding sections. We caution the reader that the sample complexity upper bound we derive in
Theorem 53 will not be as tight as that of Theorem 10.
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Definition 51 Suppose C ⊆ {0, 1}X . Let WALC be an algorithm that takes as input a parameter
ε > 0 and a sequence of labeled data (x1, y1), (x2, y2), . . . ∈ X × [−1, 1], and outputs either
a function c ∈ C or the symbol ⊥. Consider a fixed joint distribution over X × [−1, 1], and a
pair (x, y) drawn from this distribution. We say that WALC is a weak agnostic learner with failure
probability β with respect to this distribution if the following two conditions hold when WALC,ε is
run on input ε and i.i.d. copies of (x, y):

• If there exists c ∈ C such that E[cxy] > ε, then WALC outputs c′ ∈ C such that E[c′xy] > ε/2
with probability at least 1− β.

• If every c ∈ C satisfies E[cxy] ⩽ ε, then WALC outputs c′ ∈ C such that E[c′xy] > ε/2 or ⊥
with probability at least 1− β.

Lemma 52 LetA = AMC
C,G and ε′ = ε/8

√
|O||G|. The procedure SELECT-DISTINGUISHER(ε′, p̃,WALC)

in Algorithm 5 samples at most O((VC(C)+log(1/β)) log(1/β)/ε′2) copies of (i, o∗i ) and its output
satisfies the following two properties:

• If there exists A ∈ A with ∆A > ε, then the procedure returns A′ ∈ A with ∆A′ > ε′/2 with
probability at least 1− β.

• If every A ∈ A satisfies ∆A ⩽ ε, then the procedure returns either A′ ∈ A with ∆A′ > ε′/2
or ⊥ with probability at least 1− β.

Proof Suppose first that there exists a distinguisher Ac,E ∈ A with advantage ∆Ac,E
> ε, where

c ∈ C and E ⊆ {0, 1} × O × G. This means that

Pr[(ci, õi, p̂i) ∈ E]− Pr[(ci, o∗i , p̂i) ∈ E] > ε,

which can also be written as

E
[
1[(ci, õi, p̂i) ∈ E]− 1[(ci, o

∗
i , p̂i) ∈ E]

]
> ε.

It follows that at least one of the two inequalities

E
[
ci

(
1[(1, õi, p̂i) ∈ E]− 1[(1, o∗i , p̂i) ∈ E]

)]
>

ε

2

or
E
[
(1− ci)

(
1[(0, õi, p̂i) ∈ E]− 1[(0, o∗i , p̂i) ∈ E]

)]
>

ε

2

must hold. If C is closed under complement, we may assume without loss of generality that the
first inequality holds. Using the expression LABEL defined in the algorithm, we may rewrite this
inequality as

E [ci · LABEL(i, o∗i , p̃, E)] >
ε

2
.

Consider a fixed iteration s ∈ [S] in the main loop of procedure SELECT-DISTINGUISHER.
Using standard anti-concentration inequalities, we will show that

E
[
ci · LABEL(i, o∗i , p̃, Es)

∣∣∣ Es

]
> ε′
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Algorithm 5: Outcome Indistinguishability via Randomized Distinguisher Selection

def Label(j, o, p̃, E):
o′ ∼ p̃j // draw o′ ∈ O from the distribution p̃j
return 1[(1, o′, p̂j) ∈ E]− 1[(1, o, p̂j) ∈ E]

end

def Select-Distinguisher(ε, p̃,WALC):
S ← O(log(1/β)) // set parameters
T ← O((VC(C) + log(S/β))/ε2)
for s = 1, . . . , S do // one-sided error amplification

Es ∼ 2{1}×O×G // draw Es ⊆ {1} × O × G uniformly at random
for t = 1, . . . , T do

(ist, o
∗
ist
) ∼ (i, o∗i ) // draw independent copy of (i, o∗i )

(xst, yst)←
(
(ist, o

∗
ist
), Label(ist, o∗ist , p̃, Es)

)
end
cs ←WALC (ε, (xs1, ys1), . . . , (xsT ysT )) // check for
(C, ε)-multicalibration violation

if cs ̸= ⊥ then
return Acs,Es

end
end
return ⊥

end

def Construct(ε, p̃,WALC , update):
ε′ ← ε/8

√
|O||G|

A← Select-Distinguisher(ε′, p̃,WALC)
if A = ⊥ then

return p̃
end
for j ∈ X do

for o ∈ O do
Lj(o)← A(j, o, p̃) // define loss function

end
p̃′j ← update(p̃j , Lj) // no-regret update

end
return Construct(ε, p̃′,WALC , update) // recurse

end
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with probability at least Ω(1) (over the randomness in the choice of Es ⊆ {1} × O × G).
Once this is shown, it will follow that for an appropriate choice of the number of iterations

S = O(log(1/β)), with probability at least 1− β/2 over the draws of E1, . . . , ES , there will exist
some iteration s ∈ [S] such that the set Es has the above property.

Additionally, WALC succeeds in all S iterations with probability at least 1− β/2 since it is fed
T = O((VC(C) + log(S/β)/(ε′)2) fresh labeled samples in each iteration.

Consequently, SELECT-DISTINGUISHER returns a distinguisher Acs,Es such that

∆Acs,Es
= E

[
csi · LABEL(i, o∗i , p̃, Es)

∣∣∣ cs, Es

]
>

ε

2

with probability at least 1 − β over all of the internal randomness of the algorithm (i.e., the draws
of E1, . . . ES and the samples (ist, o∗ist) fed to WALC).

In the case that every distinguisher Ac,E ∈ A satisfies ∆Ac,E
⩽ 3
√
|O||G|ε, the error guarantee

of WALC similarly ensures that the procedure returns either A′ ∈ A with ∆A′ > ε/2 or ⊥ with
probability at least 1− β.

It remains to prove the claim that the existence of a set E ⊆ {0, 1} × O × G satisfying

E[ci · LABEL(i, o∗i , p̃, E)] >
ε

2

implies that
E[ci · LABEL(i, o∗i , p̃, Es) | Es] > ε′

with probability at least Ω(1) over the draw of a uniformly random Es ⊆ {1} × O × G. To begin,
define the sign σEs(o, v) to be 1 if (1, o, v) ∈ Es and −1 if (1, o, v) /∈ Es. It is clear that the
collection of random variables {σEs(o, v) | o ∈ O, v ∈ G} are independent Rademacher random
variables.

Some algebra shows that

E[ciLABEL(i, o∗i , p̃, Es) | Es] =
1

2

∑
o∈O
v∈G

σEs(o, v)
(

Pr[ci = 1, õi = o, p̂i = v]−Pr[ci = 1, o∗i = o, p̂i = v]
)
,

which clearly has mean 0 and standard deviation

1

2

∑
o∈O
v∈G

(
Pr[ci = 1, õi = o, p̂i = v]− Pr[ci = 1, o∗i = o, p̂i = v]

)2
1
2

.

By the Cauchy-Schwarz inequality, this standard deviation is at least

1

2
√
|O||G|

∑
o∈O
v∈G

∣∣∣Pr[ci = 1, õi = o, p̂i = v]− Pr[ci = 1, o∗i = o, p̂i = v]
∣∣∣,

which is at least
1

2
√
|O||G|

E[ci · LABEL(i, o∗i , p̃, E)] >
ε

4
√
|O||G|

= 2ε′.

To conclude the proof, we observe any symmetric random variable with mean 0 and standard devi-
ation 2ε′ must exceed ε′ with probability Ω(1) (e.g., by the Paley-Zygmund inequality).
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Theorem 53 Fix C ⊆ {0, 1}X and let ℓ = |O|. There is a constant c > 0 and an algorithm that
takes as input (c/ε)2ℓ+c ·VC(C) i.i.d. individual-outcome pairs and outputs a (C, ε)-multicalibrated
predictor w.p. 99% while only accessing C through calls to WALC .

Proof The proof of Theorem 42 with a step size proportional to ε′, along with the two properties
in Lemma 52, gives a O(log(ℓ)/ε′2) upper bound on the number of updates. Lemma 52 also upper
bounds the number of samples needed per update by O(VC(C)/ε′2). Choosing β appropriately and
applying a union bound over the entire sequence of updates and substituting ε′ = Θ(ε/

√
|O||G|)

yields the claimed sample complexity upper bound.

Appendix G. Properties of Intermediate Regularity

This section is devoted to the following two results, which establish the strict separation of our
notion of intermediate regularity from Szemerédi regularity and from Frieze-Kannan regularity.

Theorem 54 There is an absolute constant c ∈ (0, 1) such that for all sufficiently small ε > 0:

• For any graph G, if the vertex partition P satisfies intermediate ε-regularity, then P satisfies
Frieze-Kannan εc-regularity.

• There exists a graph G and a vertex partition P satisfying Frieze-Kannan ε-regularity but not
intermediate c-regularity.

Theorem 55 There is an absolute constant c ∈ (0, 1) such that for all sufficiently small ε > 0:

• For any graph G, if the vertex partition P satisfies Szemerédi ε-regularity, then P satisfies
intermediate εc-regularity.

• There exists a graph G such that any vertex partition P satisfying intermediate ε-regularity
does not satisfy Szemerédi c√

log∗(1/ε)
-regularity.

In order to prove Theorems 54 and 55, it will be useful to introduce an alternative characteriza-
tion of Szemerédi regularity, based on the notion of irregularity:

Definition 56 Let X,Y ⊆ V . The irregularity of the pair (X,Y ) is

irreg(X,Y ) = max
S⊆X
T⊆Y

∣∣e(S, T )− d(X,Y )|S||T |
∣∣.

Specifically, it is known that Szemerédi ε-regularity (Definition 14) is equivalent to having
irregularity at most ε|V |2, up to a polynomial change in ε, where the irregularity of a partition
is defined as follows:

Definition 57 The irregularity of a partition P = {V1, . . . , Vm} of V is

irreg(P) =
∑

j,k∈[m]

irreg(Vj , Vk).
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For more on this equivalence, we refer the reader to Skorski (2017). One can state an alter-
nate version of the definition of intermediate regularity (Definition 17) that is equivalent up to a
polynomial change in the ε parameter. Specifically, one can check that intermediate ε-regularity is
equivalent to having (S, T )-irregularity at most ε|V |2 for all S, T ⊆ V , up to a polynomial change
in ε, where the (S, T )-irregularity of a partition is defined as follows:

Definition 58 Let X,Y, S, T ⊆ V . The (S, T )-irregularity of the pair (X,Y ) is

irregS,T (X,Y ) =
∣∣∣e(S ∩X,T ∩ Y )− d(X,Y )|S ∩X||T ∩ Y |

∣∣∣.
Definition 59 The (S, T )-irregularity of a partition P = {V1, . . . , Vm} of V is

irregS,T (P) =
∑

j,k∈[m]

irregS,T (Vj , Vk).

We now formally state and prove the claimed equivalence between Definitions 17 and 59:

Theorem 60 If P satisfies intermediate ε-regularity, then P has (S, T )-irregularity at most 2ε|V |2
for all S, T ⊆ V . Conversely, if P has (S, T )-irregularity at most ε|V |2 for all S, T ⊆ V , then P
satisfies intermediate

√
ε-regularity.

Proof To prove the forward direction, suppose that the partition P = {V1, . . . , Vm} satisfies inter-
mediate ε-regularity. If (Vj , Vk) is an (S, T, ε)-regular pair, then

irregS,T (Vj , Vk) ⩽ ε|S ∩ Vj ||T ∩ Vk|.

If (Vj , Vk) is not an (S, T, ε)-regular pair, we only have the bound

irregS,T (Vj , Vk) ⩽ |S ∩ Vj ||T ∩ Vk|.

Consequently,

irregS,T (P) ⩽
∑

j,k∈[m]
(Vj ,Vk) is (S,T,ε)-regular

ε|S ∩ Vj ||T ∩ Vk|+
∑

j,k∈[m]
(Vj ,Vk) not (S,T,ε)-regular

|S ∩ Vj ||T ∩ Vk|.

The first sum is clearly at most ε|V |2, and the second sum is at most ε|V |2 by Definition 17.
To prove the converse direction, suppose that P has (S, T )-irregularity at most ε|V |2 for all

S, T ⊆ V . If a pair (Vj , Vk) is not (S, T,
√
ε)-regular, then irregS,T (Vj , Vk) ⩾

√
ε|S ∩Vj ||T ∩Vk|.

It follows that the partition P under consideration satisfies

ε|V |2 ⩾ irregS,T (P) ⩾
∑

j,k∈[m]
(Vj ,Vk) not (S,T,

√
ε)-regular

√
ε|S ∩ Vj ||T ∩ Vk|,

and dividing both sides by
√
ε allows us to conclude that P satisfies intermediate

√
ε-regularity.

With these alternative characterizations of Szemerédi regularity and intermediate regularity in
hand, we are ready to prove Theorems 54 and 55, establishing the strict separation of intermediate
regularity from prior notions.
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Proof of Theorem 54 For the first part, it suffices to show that P satisfies Frieze-Kannan ε-
regularity if it has (S, T )-irregularity at most ε|V |2 for all S, T ⊆ V . To this end, fix S, T ⊆ V and
observe that∣∣∣∣∣∣e(S, T )−

∑
j,k∈[m]

djk|S ∩ Vj ||T ∩ Vk|

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

j,k∈[m]

(
e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|

)∣∣∣∣∣∣ ,
where djk = d(Vj , Vk). By the triangle inequality, the right hand side is at most∑

j,k∈[m]

∣∣∣e(S ∩ Vj , T ∩ Vk)− d(Vj , Vk)|S ∩ Vj ||T ∩ Vk|
∣∣∣ = irregS,T (P) ⩽ ε|V |2.

For the second part, let G = (V,E) be any graph with the property that∣∣∣∣eG(S, T )− 1

2
|S||T |

∣∣∣∣ < ε|V |2

for all S, T ⊆ V . The existence of such a quasirandom graph of density 1/2 follows from stan-
dard probabilistic arguments, but explicit constructions are also known Zhao (2022). We will now
modify the graph G into a graph G′ with a partition P satisfying Frieze-Kannan ε-regularity but not
intermediate 1/9-regularity. To do so, let G′ = (V ′, E′) be the graph with V ′ = V × [2] and

E′ =
{(

(v1, b1), (v2, b2)
)
| (v1, v2) ∈ E or b1 ̸= b2 but not both

}
.

This graph G′ can be realized as the Xor product Alon and Lubetzky (2007) of G with a graph
consisting of a single edge. We claim that the partition P =

{
{(v, 1), (v, 2)} | v ∈ V

}
of V ′ has

the desired properties. To check Frieze-Kannan ε-regularity, observe that the density of edges from
any part of P to another is precisely 1/2, so it suffices to show that∣∣∣∣eG′(S′, T ′)− 1

2
|S′||T ′|

∣∣∣∣ ⩽ ε|V ′|2

for any S′, T ′ ⊆ V ′. To this end, for S′ ⊆ V ′ and b ∈ [2], let S′
b = {v ∈ V | (v, b) ∈ V ′}. Then∣∣∣∣eG′(S′, T ′)− 1

2
|S′||T ′|

∣∣∣∣ = ∣∣∣∣|E ∩ (S′
1 × T ′

1)| −
1

2
|S′

1||T ′
1|
∣∣∣∣

+

∣∣∣∣|(V 2 \ E) ∩ (S′
1 × T ′

2)| −
1

2
|S′

1||T ′
2|
∣∣∣∣

+

∣∣∣∣|(V 2 \ E) ∩ (S′
2 × T ′

1)| −
1

2
|S′

2||T ′
1|
∣∣∣∣

+

∣∣∣∣|E ∩ (S′
2 × T ′

2)| −
1

2
|S′

2||T ′
2|
∣∣∣∣ ,

and, by our initial choice of G, each of the four terms on the right hand is at most ε|V |2 = ε|V ′|2/4.
To check that intermediate 1/9-regularity fails, let S′ = T ′ = {(v, b) ∈ V ′ | b = 1}. Then

irregS′,T ′(P) =
∑

v1,v2∈V

∣∣∣∣1[(v1, v2) ∈ E]− 1

2

∣∣∣∣ = 1

2
|V |2 = 1

8
|V ′|2.
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Proof of Theorem 55 For the first part, it suffices by Theorem 60 to show that the (S, T )-
irregularity of P is bounded above by its irregularity. To this end, observe that for any Vj , Vk ∈ P ,
we have that

irreg(Vj , Vk) = max
S,T⊆V

irregS,T (Vj , Vk).

Therefore, for any particular S, T ⊆ V , we have that

irregS,T (P) =
∑

j,k∈[m]

irregS,T (Vj , Vk) ⩽
∑

j,k∈[m]

irreg(Vj , Vk) = irreg(P).

The second part follows readily from the following two facts. The first fact is a lower bound on
the number of parts required to achieve Szemerédi ε-regularity. Specifically, Fox and Lovász (2017)
showed that there exists a graph for which every vertex partition P with

irreg(P) ⩽ ε|V |2

requires the number of parts |P| to be at least a tower of twos of height Ω(1/ε2). The second fact is
an upper bound on the number of parts required to achieve intermediate ε-regularity. Specifically,
we will argue in Appendix H that every graph has a vertex partition P with

max
S,T⊆V

irregS,T (P) ⩽ ε|V |2

and |P| ⩽ 41/ε
2
. Comparing these upper and lower bounds yields the claimed separation between

intermediate and Szemerédi regularity.

Appendix H. Algorithm for Intermediate Regularity

Theorem 19 suggests that intermediate regularity might be achievable via a modified multicalibra-
tion algorithm. This is indeed the case, and standard analyses show that Algorithm 6, initialized with
the trivial partition P = {V }, computes such a partition with complexity summarized by the sec-
ond row of Table 1. The algorithm can also be viewed as a modification of a standard algorithm for
Frieze-Kannan regularity. The SELECT subroutine of Algorithm 6 implements the algorithm from
Alon and Naor (2004) that takes as input a function f : V × V → [−1, 1] and outputs S, T ⊆ V

such that
∣∣∣∑(u,v)∈S×T f(u, v)

∣∣∣ > 1
2 maxS′,T ′⊆V

∣∣∣∑(u,v)∈S′×T ′ f(u, v)
∣∣∣ in poly(|V |) time.

Regularity Notion Number of Parts Time Complexity7

Frieze-Kannan exp(poly(1/ε)) poly(n/ε)
Intermediate exp(poly(1/ε)) poly(n) exp(exp(poly(1/ε)))
Szemerédi tower(poly(1/ε)) poly(n)tower(poly(1/ε))

Table 1: Some Upper Bounds on Achieving Graph Regularity (n = |V |, tower(h) = 22
··
·2︸ ︷︷ ︸

h times

)

At this point, it is instructive to compare Algorithm 6, which achieves intermediate regularity,
to the two algorithms of Skorski (2017), which target Frieze-Kannan and Szemerédi regularity.

7. The time complexity bound for Frieze-Kannan regularity is for computing an implicit representation of the partition.
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Algorithm 6: Construction of Intermediate ε-Regularity Partition

def REFINE(ε, G, P):
for σ ∈ {−1,+1}m×m do

S, T ← SELECT(
∑m

j=1

∑m
k=1 σjk(1E − d(Vj , Vk))1Vj×Vk

)

if irregS,T (P) > 1
2ε|V |

2 then
P ′ ← common refinement of S, T , and P
return REFINE(ε, G, P ′)

end
end
return P

end

Indeed, using the informal notation of Section 1.3 of Skorski (2017), the three algorithms can be
viewed as computing low-complexity approximations P = {V1, . . . , Vk} to the graph with respect
to the following families of test functions:

F = {f : f = ±1T×S} (for Frieze-Kannan Regularity)

F =

f : f =
∑
j,k

±1(T∩Vj)×(S∩Vk)

 (for Intermediate Regularity)

F =

f : f =
∑
j,k

±1Tj,k×Sj,k

 (for Szemerédi Regularity)

Above, the sums are taken over j, k ∈ [m], and we consider all T ⊆ V , all S ⊆ V , all Tj,k ⊆ Vj , all
Sj,k ⊆ Vk, and the ± symbol is understood to be a factor of +1 or −1, possibly different for each
term in the sum.

Intuitively, these three families of functions are testing for multiaccuracy, multicalibration, and
strict multicalibration with respect to the same collection of subpopulations, namely C = {T × S :
T ⊆ V, S ⊆ V }, and this can be seen by viewing the products Vj × Vk of parts of the partition P as
playing the role of “level sets of p̃” in the language of multi-group fairness.

Appendix I. Proof of Theorem 19

Throughout this proof, we will use the notation djk and ∆S,v from the proof sketch in Appendix 6.2,
as well as the alternate characterizations of Szemerédi and intermediate regularity from Appendix G.

(a) As usual, let V1, . . . , Vm denote the parts of P , and consider any fixed sets S, T ⊆ V and
value v ∈ [0, 1]. The construction of p̃ ensures that p̃(a,b) = d(Vj , Vk) for any vertex pair
(a, b) ∈ Vj × Vk, so some algebra yields

∆S×T,v(p̃) =
∑

(j,k)∈[m]2 s.t.
p̃(Vj×Vk)=v

e(S ∩ Vj , T ∩ Vk)− d(Vj , Vk)|S ∩ Vj ||T ∩ Vk|,
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along with the useful fact that ∆X\(S×T ),v(p̃) = −∆S×T,v(p̃). By taking absolute values,
summing over v in the range of p̃, and taking the max over S, T ⊆ V in various orders on
both sides of the above equation, we deduce the following three inequalities:

max
S,T⊆V

∣∣∣∣∣∣
∑

v∈p̃(X )

∆S×T,v(p̃)

∣∣∣∣∣∣ ⩽ max
S,T⊆V

∣∣∣∣∣∣
m∑
j=1

m∑
k=1

e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|

∣∣∣∣∣∣ ,
max
S,T⊆V

∑
v∈p̃(X )

|∆S×T,v(p̃)| ⩽ max
S,T⊆V

m∑
j=1

m∑
k=1

|e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|| ,

∑
v∈p̃(X )

max
S,T⊆V

|∆S×T,v(p̃)| ⩽
m∑
j=1

m∑
k=1

max
S,T⊆V

|e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|| .

The above three inequalities, show, respectively, that for an appropriate absolute constant c ∈
(0, 1) and sufficiently small ε > 0, Frieze-Kannan ε-regularity of P implies εc-multiaccuracy
of p̃, that intermediate ε-regularity of P implies εc-multicalibration of p̃, and that Szemerédi
ε-regularity of P implies strict εc-multicalibration of p̃.

(b) For a fixed set S ⊆ V of vertices, let S̃ ⊆ V denote a random set of vertices sampled as
follows: for each j ∈ [m], independently include all vertices of Vj in S̃ with probability
|S ∩ Vj |/|Vj |. With this notation, a simple algebraic calculation shows that for any fixed
j, k ∈ [m] such that Vj × Vk exactly coincides with the v-level set of p̃, and for any fixed sets
S, T ⊆ V , we have

e(S ∩ Vj , T ∩ Vk)− d(Vj , Vk)|S ∩ Vj ||T ∩ Vk| = ∆S×T,v(p̃)− E
S̃,T̃

[
∆S̃×T̃ ,v(p̃)

]
.

We will manipulate this key equation in three different ways to derive the three versions of
this part of the theorem. First, by summing over j, k ∈ [m], taking absolute values, and
applying the triangle inequality, we see that∣∣∣∣∣∣e(S, T )−

∑
j,k∈[m]

djk|S ∩ Vj ||T ∩ Vk|

∣∣∣∣∣∣ ⩽ |∆S×T (p̃)|+ E
S̃,T̃

∣∣∣∣∣∣
∑

v∈p̃(X )

∆S̃×T̃ ,v(p̃)

∣∣∣∣∣∣ .
For small enough ε, c > 0, this shows that ε-multiaccuracy of p̃ implies Frieze-Kannan εc-
regularity of P . If we were to instead take absolute values of both sides before summing over
j, k ∈ [m] and applying the triangle inequality, we would see that∑
j,k∈[m]

∣∣∣e(S ∩ Vj , T ∩ Vk)− djk|S ∩ Vj ||T ∩ Vk|
∣∣∣ ⩽ ∑

v∈p̃(X )

|∆S×T,v(p̃)|+
∑

v∈p̃(X )

|∆V×V,v(p̃)| ,

which shows that ε-multicalibration of p̃ implies intermediate εc-regularity of P . Finally, if
we had chosen to take the maximum over S, T before summing over j, k ∈ [m] and applying
the triangle inequality, we would have seen that∑

j,k∈[m]

irreg(Vj , Vk) ⩽
∑

v∈p̃(X )

max
S,T⊆V

|∆S×T,v(p̃)|+
∑

v∈p̃(X )

|∆V×V,v(p̃)| ,

which shows that strict ε-multicalibration of p̃ implies Szemerédi εc-regularity of P .
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Appendix J. Proof of Theorem 20

We first prove Lemma 62, which states that we can obtain a relatively simple predictor satisfying
both (a variant of) statistical-distance multicalibration and the additional guarantee that the pre-
dictor is perfectly accurate in expectation on all its slices. This is obtained by a careful analysis
of a simple post-processing of the predictor obtained by our multicalibration-through-outcome-
indistinguishability Algorithm 1 when instantiated with a suitable class of distinguishers.

The change is that instead of requiring indistinguishability w.r.t. the real valued c’s (which
would require close to perfect accuracy), we ask for indistinguishability with respect to outcomes
when treating ci as a probability. That is, instead of bounding δ((ci, ŏi, p̂i), (ci, o

∗
i , p̂i)), we bound

δ((oci , ŏi, p̂i), (o
c
i , o

∗
i , p̂i)) < ε, where oci ∼ Ber(ci).

We’ll also need a new family of distinguishers.

Definition 61 Let BMC
C,G = {Bc,E | c ∈ C, E ⊆ Y ×O × G} , for C ∈ ∆YX , where

Bc,E(j, o, p̃) = 1[(ocj ← cj , o, p̂j) ∈ E]

for each member j ∈ X , possible outcome o ∈ O, and predictor p̃ : X → ∆O.

Note that Definition 9 is a special case of Definition 61 for trivial distributions.

Lemma 62 For every ε > 0, η > 0, there is a function p̆ ∈ RT (ε)(C), p̆ : X → [0, 1] and a
partitioning function p̂ : X → G, with G an η-cover of [0, 1] s.t.

1. for all c ∈ C, δ((oci , ŏi, p̂i), (o
c
i , o

∗
i , p̂i)) < ε.

2. p̆ is perfectly accurate in expectation on the slices p̂ = v.

3. T (ε) = O
(

1
ε2

)
Proof Run Algorithm 1 using the collection of distinguishers BMC

C,G , where C is as provided in the

statement of the theorem and G is the standard η covering, to obtain p̃ that is
(
BMC
C,G ,

ε
2

)
-outcome-

indistinguishable from p∗ and has relative complexity T (ε) = O(ε−2) to C. This gives us a predictor
satisfying

δ((oci , ŏi, p̂i), (o
c
i , o

∗
i , p̂i)) <

ε

2
However, it does not necessarily satisfy Claim 2; we will modify p̃ to obtain a new predictor p̆

that satisfies both Claims 1 and 2. This is achieved by shifting p̃ on the level sets of p̂, incurring an
additive term of |G| on the complexity of p̂. Speaking intuitively, Claim 1 still holds for this new p̂
since we are only improving the accuracy of p̂; we prove this intuition to be (nearly) correct. More
formally, define

p̆i := p̃i + τ(p̂i),

where
τv := E[p∗i − p̃i|p̂i = v].

p̆i satisfies Claim 1 by construction. Finally, it remains to show that Claim 1 still holds for this new
p̆. First, we show that the average magnitude of these shifts must be small:

E
v
[|τv|] = E

v
[|E[p∗i − p̃i|p̂i = v]|]

⩽ δ((oci , õi, p̂i), (o
c
i , o

∗
i , p̂i))
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We show that this implies that shifting at most doubles the statistical difference.

δ((oci , ŏi, p̂i), (o
c
i , o

∗
i , p̂i)) = E

y
[δ((ŏi, p̂i), (o

∗
i , p̂i)|oci = y)]

= E
y

[
E
v

[∣∣∣∣Ei [p∗i − p̆i|p̂i = v]

∣∣∣∣ |oci = y

]]
= E

y

[
E
v

[∣∣∣∣Ei [p∗i − p̃i − τv|p̂i = v]

∣∣∣∣ |oci = y

]]
⩽ E

y

[
E
v

[(∣∣∣∣Ei [p∗i − p̃i|p̂i = v]

∣∣∣∣+ |τv|) |oci = y

]]

Applying the above fact,

⩽ E
y

[
E
v

[∣∣∣∣Ei [p∗i − p̃i|p̂i = v]

∣∣∣∣ |oci = y

]]
+ δ((oci , õi, p̂i), (o

c
i , o

∗
i , p̂i))

= 2δ((oci , õi, p̂i), (o
c
i , o

∗
i , p̂i))

⩽ ε.

We will continue to use G to denote the set of rounded to values/slices for a predictor. In this
section, we will always use G of the form (0, η, . . . , ⌈ 1η − 1⌉ · η, 1), so that m = |G| = ⌈ 1η ⌉+1. For
clarity, we will assume from now on that η = 1/m to avoid having to clutter the presentation with
rounding.

The next lemma lets us find large slices on which the target function has large variance, under
the assumption that p̃ fails to α-approximate p∗.

Lemma 63 Let p̆ : [0, 1]X and p̂ : GX . If E[(p̆i − p∗i )
2] > α, then there exists v ∈ G s.t.

1. Pr[p̂i = v] ⩾ 2αη

2. and Var(p∗i |p̂i = v) ⩾ α
2 − 3η

Proof First, we show that we can approximately break down E[(p̆i − p∗i )
2] > α as the average of

the variance of p∗ on the slices defined by p̂.

α < E[(p̆i − p∗i )
2]

=
∑
v∈G

Pr[p̂i = v]E[(p̆i − p∗i )
2|p̂i = v]
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Letting µv denote the expected value of p∗i on slice v which, by construction, is equivalent to that
of p̆i,

=
∑
v∈G

Pr[p̂i = v]E[(p̆i − µv + µv − p∗i )
2|p̂i = v]

=
∑
v∈G

Pr[p̂i = v]E[(p∗i − µv)
2 − 2(p∗i − µv)(p̆i − µv) + (p̆i − µv)

2

=
∑
v∈G

Pr[p̂i = v] (Var(p∗i |p̂i = v)− 2Cov(p∗, p̆|p̂i = v) + Var(p̆i|p̂i = v))

Since p̆i is bounded within an interval of size η,

⩽
∑
v∈G

Pr[p̂i = v](Var(p∗i |p̂i = v) + 3η).

Next, we apply a Markov type argument to show that the total probability of all the slices with large
p∗ variance must be at least α/2. Let B denote the slices on which Var(p∗i |p̂i = v) ⩾ α

2 − 3η.∑
v∈G

Pr[p̂i = v]Var(p∗i |p̂i = v)

=
∑
v∈B

Pr[p̂i = v]Var(p∗i |p̂i = v) +
∑

v∈G−B
Pr[p̂i = v]Var(p∗i |p̂i = v)

Since p∗ is bounded in [0, 1], it has variance at most 1/4,

⩽
∑
v∈B

Pr[p̂i = v] · 1
4
+
∑

v∈G−B
Pr[p̂i = v]

(α
2
− 3η

)
=

1

4
Pr[B] + α

2
− 3η.

Combining with the first inequality, we conclude that

Pr[B] ⩾ 2α

And because G is the uniform η covering, we conclude that there exists a v ∈ B satisfying Pr[p̂i =
v] ⩾ 2αη.

The final two lemmas let us show that if there is no hardcore, then statistical distance must be
large.

Lemma 64 δ((oci , ŏi), (o
c
i , o

∗
i ) | p̂i) ⩾ Cov(ci, p∗i | p̂i)− η.

Proof We first show that Cov(ci, p∗i | p̂i) = E[oci (o∗i − ôi)|p̂i].

Cov(ci, p∗i | p̂i) = E[ci(p∗i − p̂i)|p̂i]
= E[oci (o

∗
i − ôi)|p̂i]
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Next, we show that E[oci (o∗i − ôi)|p̂i] ≤ δ((oci , ôi, p̂i), (o
c
i , o

∗
i , p̂i) | p̂i).

E[oci (o
∗
i − ôi)|p̂i] = E[(oci −

1

2
)(o∗i − ôi)|p̂i]

= E[
1

2
(Pr[oci = 1](Pr[o∗i = 1]− Pr[õi = 1]) + Pr[oci = 0](Pr[o∗i = 0]− Pr[õi = 0])]

=
1

2
(Pr[oci = o∗i ]− Pr[oci − õi])

≤ δ((oci , ôi), (o
c
i , o

∗
i ) | p̂i)

Putting the two together, we get

δ((oci , ôi), (o
c
i , o

∗
i ) | p̂i) ≥ Cov(ci, p∗i | p̂i)

To conclude the proof, observe that δ
(
(ci, o

∗
i ), (ci, ôi) | p̂i

)
⩽ δ
(
(ci, o

∗
i ), (ci, ŏi) | p̂i

)
+ η.

Lemma 65 If there exists v∗ ∈ G satisfying:

1. Pr[p̂i = v∗] > β

2. Var(p∗i |p̂i = v∗) > λ

3. Cov(c, p∗|p̂i = v∗) > γ Var(p∗i |p̂i = v∗)

Then
δ((ci, ŏi, p̂i), (ci, o

∗
i , p̂i)) > βγλ− βη

Proof This lemma is a simple consequence of the Lemma 64 and the definition of conditional
statistical distance.

δ((ci, ŏi, p̂i), (ci, o
∗
i , p̂i)) =

∑
v

Pr[p̂i = v]δ((ci, ŏi, p̂i), (ci, o
∗
i , p̂i)|p̂i = v)

⩾
∑
v

Pr[p̂i = v](Cov(c, p∗|p̂i = v)− η)

⩾ Pr[p̂i = v∗](Cov(c, p∗|p̂i = v∗)− η)

> β(γ Var(p∗i |p̂i = v∗)− η)

> βγλ− βη.

Theorem 20 now follows by setting parameters and gluing these lemmas together.
Proof [Proof of Theorem 20] First, we apply Lemma 62 with parameters ε = α3γ2

16 ,η = αγ
8 to attain

a p̆ ∈ RT (ε)(C). T (ε) = O
(

1
ε2

)
= O

(
1

α6γ4

)
. Also, by the α-hardness assumption, we can apply

Lemma 63 to attain a v∗ satisfying Pr[p̂i = v∗] ⩾ 2αη and Var(p∗i |p̂i = v∗) ⩾ α
2 − 3η. Finally,

by Lemma 65, we conclude that if there is no hard-core set (i.e. the conditions of the lemma are
satisfied with β = 2αη, λ = α

2 − 3η, and γ as provided), then

δ((ci, ŏi, p̂i), (ci, o
∗
i , p̂i)) > βγλ− βη >

α3γ2

16
= ε.
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This violates the conclusion from our application of Lemma 62, that

δ((ci, ŏi, p̂i), (ci, o
∗
i , p̂i)) < ε.

We therefore conclude that there must exist a hardcore set as specified in the theorem statement.
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