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A reconstruction attack on a private dataset D takes as input some publicly accessible
information about the dataset and produces a list of candidate elements of D. We
introduce a class of data reconstruction attacks based on randomized methods for
nonconvex optimization. We empirically demonstrate that our attacks can not only
reconstruct full rows of D from aggregate query statistics Q(D) ∈ Rm but can do
so in a way that reliably ranks reconstructed rows by their odds of appearing in the
private data, providing a signature that could be used for prioritizing reconstructed
rows for further actions such as identity theft or hate crime. We also design a sequence
of baselines for evaluating reconstruction attacks. Our attacks significantly outperform
those that are based only on access to a public distribution or population from which
the private dataset D was sampled, demonstrating that they are exploiting information
in the aggregate statisticsQ(D) and not simply the overall structure of the distribution.
In other words, the queries Q(D) are permitting reconstruction of elements of this
dataset, not the distribution from which D was drawn. These findings are established
both on 2010 US decennial Census data and queries and Census-derived American
Community Survey datasets. Taken together, our methods and experiments illustrate
the risks in releasing numerically precise aggregate statistics of a large dataset and
provide further motivation for the careful application of provably private techniques
such as differential privacy.

data privacy | U.S. Census | reconstruction attack | differential privacy

The goals of data analysis and those of responsible data stewardship are often in tension:
we wish to extract and share useful information about important datasets but also must
maintain the privacy of the individuals whose information comprises the datasets. This
is exactly the problem faced by the US Census Bureau, which on the one hand has a
legal mandate to protect the privacy of its respondents,* but on the other hand is a major
governmental statistical agency that released over 150 billion tabulations from the data
collected as part of the 2010 decennial Census (1). What is the risk of releasing large
numbers of aggregate statistics from this and similarly sensitive datasets?

In this work, we empirically demonstrate that without taking explicit and rigorous
steps to ensure individual privacy, the release of simple aggregate statistics of large
datasets is highly vulnerable to specific and computationally feasible attacks that can
reliably reconstruct complete rows of the private dataset. These findings stand even when
measured against a hierarchy of baseline metrics that correspond to “reconstructions”
that result from increasingly fine-grained knowledge of the distribution from which the
private data were drawn.

A. Confidence. An important and damaging aspect of the attacks we propose is their
ability to give confident predictions about which rows have been correctly reconstructed
when the reconstructions are not perfect (as is typically the case). Our methods output a
ranking over candidate-reconstructed rows that is highly correlated with their presence in
the private data, with rows that appear early in the ranking having high odds of appearing
in the true dataset. Such a ranking could be used by an adversary to prioritize subsequent
exploitation of private data—for example, for identity theft or to locate individuals of

∗Title 13, Section 9, of the US Code says, “a) Neither the Secretary, nor any other officer or employee of the Department
of Commerce or bureau or agency thereof, or local government census liaison, may, except as provided in section 8 or 16
or chapter 10 of this title [13 USCS § 8 or 16 or §§ 401 et seq.] or section 210 of the Departments of Commerce, Justice,
and State, the Judiciary, and Related Agencies Appropriations Act, 1998 [13 USCS § 141 note] or section 2(f) of the Census
of Agriculture Act of 1997 [7 USCS § 2204g(f)]— 1) use the information furnished under the provisions of this title for any
purpose other than the statistical purposes for which it is supplied; or 2) make any publication whereby the data furnished
by any particular establishment or individual under this title can be identified; or 3) permit anyone other than the sworn
officers and employees of the Department or bureau or agency thereof to examine the individual reports.”
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certain backgrounds (or even in the intersection of certain
background, age range, and sex categories).†

Our methods are based on casting the reconstruction problem
as an instance of large-scale, nonconvex optimization, along with
a subsequent step to convert noncontinuous (e.g., categorical)
features back to their original schema. The algorithms are closely
related to recent methods for generating synthetic versions of
sensitive datasets (5–7) while enforcing Differential Privacy (DP)
(8–11). Crucially, these techniques are randomized, which allows
us to repeat the reconstruction multiple times and get different
results. Our confidence rankings are obtained by computing how
frequently rows appear in multiple reconstructions; this is the
primary methodological strength of our approach.‡

We establish the striking and consistent empirical phe-
nomenon that rows that appear more frequently across repeated
optimizations are also more likely to be rows of the private
dataset—thus allowing an attacker to build confidence in the
authenticity of rows that are repeatedly reconstructed and to
prioritize individuals for other forms of attack. We present
a simple mathematical justification in a Bayesian framework
that provides intuition for this phenomenon. We remark that
reconstruction (recovering the rows of the private dataset from
published statistics) is a different problem from reidentification
(reattaching names to the reconstructed rows)—but prior work
(16) shows that reidentification risk can be confidently estimated
given reconstructed rows and is generally high for data with even
a moderate number of recorded features.

B. Baselines. The Census bureau itself conducted a reconstruc-
tion attack on 2010 Census data and reported top-level statistics
on what fraction of rows in the reconstruction matched rows in
the original data—46% (17). This has been dismissed as benign
because the top-level statistics were not compared to baseline
“attacks” that could be performed from publicly available data,
and which might have achieved similar top-level match rates
(18, 19). While the criticism is simply incorrect in the case of
small Census blocks (20), it does raise the important question
of choosing appropriate baselines and what we should measure,
beyond top-level reconstruction rates, to indicate when we should
view reconstruction attacks as worrisome. For example, even if
we cannot reconstruct all or even most rows in a dataset, can we
have confidence that some of our particular reconstructed rows
are correct? If so, this is a reason for concern even when top-level
reconstruction rates are well below 100%.

Thus, a key aspect of our work is explicit comparison to
distributional baselines that correspond to increasingly precise
knowledge of the distribution from which the sensitive dataset
was sampled (but not which rows specifically were sampled).
We introduce a hierarchy of increasingly challenging baselines
that correspond to the ability to sample data points from the
true distributions of individuals at successively finer geographic
census units—namely, sampling at the national, state, county,
tract, and block levels. Our attacks are based on an optimization

†Census data were used to identify Japanese Americans to send to internment camps
during World War II (2, 3). In 2002, the Department of Homeland Security used
retabulations of census data to track Arab-Americans (4).
‡Prior deployed data reconstruction attacks are generally deterministic and based on
linear or integer programming. Theory for such attacks dates back to ref. (12). (See
ref. 13 for theory for attacks on release of contingency table statistics, which closely
match the kinds of statistics released by Census that we attack here.) See ref. 14 for a
survey of privacy attacks and ref. 15 for a description of a practical linear programming-
based reconstruction attack. Integer programming techniques could also be used in our
case together with a randomized objective function to provide the needed stochasticity.
We investigated this as well but found that the continuous optimization approach was
more performant—especially on higher dimensional data like those from the American
Community Survey.

subroutine that is initialized with some seed dataset, which is
then iteratively improved. Even when we start with a uniformly
random initialization, our attacks consistently outperform all but
the most granular baseline in terms of the number of private
rows perfectly reconstructed. If we instead initialize our attack at
the baseline distribution to which we compare—in accordance
with the assumption that the distribution is already publicly
known—then, we consistently outperform even the most gran-
ular baselines, according to this top-line metric. In other words,
the effectiveness of our attack is significantly amplified above any
baseline distribution by access to that baseline, establishing that
we are significantly exploiting additional information revealed by
the aggregate private dataset statistics.

Our primary experiments are performed on synthetic US
Census microdata released by the Census Bureau during the
development of the 2020 Census Disclosure Avoidance System
(DAS), together with the queries corresponding to the actual
statistics published by the US Census Bureau at various levels
of geographic granularity. In particular, we use queries corre-
sponding to the same tables that the Census Bureau used in their
internal reconstruction attack of the 2010 Census data (21).
To demonstrate the generality of our findings, we also run our
reconstruction attacks on large, significantly higher dimensional
datasets derived from the Census Bureau’s American Community
Survey, as processed via the Folktables package (22). In addition
to demonstrating that the attacks scale to larger (and potentially
more sensitive) datasets, this allows us to deliberately control the
queries released and study phenomena such as the effectiveness
of the attack as a function of the types and numbers of queries.

C. Consequences. This work demonstrates that the large-scale,
nonconvex optimization techniques we employ can be viewed as
both a “poison” and a “cure.” Applied carefully to noisy statistics
that ensure DP, they provide a powerful tool for sharing useful
data statistics while ensuring citizen privacy (5–7). But applied to
numerically precise statistics—even those that may provide only
aggregate information about large populations—they exfiltrate
entire rows of sensitive data with confidence.

In the context of the Census, our findings yield sober warnings
on the privacy risks of releasing aggregate queries without explicit
safeguards such as Differential Privacy. Our attacks use numeric
values of released statistics of the underlying Census microdata
and are agnostic to how these are encoded. So, for example, the
vulnerability of the data is in no way reduced if instead of releasing
tabular statistics, “synthetic microdata” are released as has recently
been proposed for the American Community Survey (23) that are
consistent with the underlying tabular statistics; our attack can be
launched against such synthetic microdata by simply computing
the underlying statistics from the microdata. The only defenses
against our attack are to introduce imprecision in the underlying
statistics themselves, as techniques like differential privacy do.

We note that all of our experiments were performed on
standard, commercially available consumer compute hardware,§
highlighting the ease and potential prevalence of such attacks. All
code and data for replicating our experiments can be found here:
https://github.com/terranceliu/rap-rank-reconstruction.

1. Materials and Methods/Preliminaries

In this section, we describe our algorithm, metrics, and the baselines we use for
comparison.

§Experiments were run using a desktop computer with an Intel Core i5-4690K processor,
16 GB of RAM, and an NVIDIA GeForce GTX 1080 Ti graphics card.

2 of 9 https://doi.org/10.1073/pnas.2218605120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
6.

23
0.

24
9.

17
7 

on
 S

ep
te

m
be

r 
8,

 2
02

3 
fr

om
 I

P 
ad

dr
es

s 
96

.2
30

.2
49

.1
77

.

https://github.com/terranceliu/rap-rank-reconstruction


A. Reconstruction Attack. A dataset is a multiset of records from a discrete
domainX . Each item in the multiset is called a row. We use D ∈ X ? to denote
a private dataset that is the target of a reconstruction attack. A reconstruction
attack takes as input aggregate statistics computed from dataset D (and in the
case of the attacks we present, a possibly uniformly random seed dataset) and
outputs a set of candidate rows, ranked according to the confidence of appearing
in D. This confidence-ordered set of rows is denoted R = {Ri ∈ X }, where the
index i in R determines the confidence ranking¶. Our rankings will be obtained
from attacks that produce a multiset X of rows. Elements appearing in X are then
ordered according to their frequency in the multiset. We let R(X) denote the
resulting ordered set (not multiset) of rows.

To measure the performance of a reconstruction attack, we introduce the
following metric that measures its accuracy at different confidence thresholds.
For any private target dataset D, the top-k match-rate of the confidence set R is
the fraction of rows ranked from 1 to k by R that actually appear in D.

MATCH−RATED,k(R)←
1
k

k∑
i=1

1
{

Ri ∈ D
}
. [1]

We can plot MATCH−RATED,k(R) as a function of k, which traces out a curve—in
general, if our confidence set has its intended semantics (that higher ranked
rows are more likely to appear in D), then the curve should be monotonically
decreasing in k. For a given level k, a higher match rate corresponds to higher
confidence that rows ranked within the top k are correct reconstructions; at a
given match rate, higher values of k correspond to the ability to confidently
reconstruct more rows.

Since R is an ordering of unique points, a match rate of 1 even at the highest
value of k does not mean that the multiplicity of the points in the original dataset
has been reconstructed, but only their identities. In isolation, it is also not clear
whether any particular value of MATCH−RATED,k(R) is cause for concern or not—
whether a given match rate is indicative of a privacy violation or not depends
on (among other things) the entropy of the underlying data distribution and on
the size of the dataset being reconstructed. As we discuss in Baselines, our view
is that MATCH−RATED,k(R) should be evaluated relative to explicit baseline
match rates computed on the same dataset being attacked, using statistical
information about similar datasets. This comparison shows how much the match
rate increases through explicit use of statistics computed from D, compared to a
(statistically) informed baseline that has no explicit access to D, independently
of what the size of D is.

B. Reconstruction From Aggregate Statistics. We design a reconstruction
attack that starts from a collection of aggregate statistics computed from the
private dataset. A statistical query is a function that counts the fraction of rows in
a dataset that satisfy a given property. We give a formal definition here:

Definition 1.1 (Statistical Queries (24)): Given a function φ : X → {0, 1}, a
statistical query (also known as a linear query or counting query) qφ is defined
as qφ(D) = 1

|D|
∑

x∈D φ(x), for any dataset D.

We use Q to denote a set of m statistical queries and Q(D) ∈ Rm to denote
the vector of statistics on the dataset D. The objective of an attack on D is to
reconstruct rows of D given Q and Q(D).

We propose a reconstruction attack mechanism RAP-RANK that learns rows
of the unknown dataset D from statistics Q(D). RAP-RANK leverages the recent
optimization heuristic relaxed adaptive projection# (RAP) (5) for synthetic data
generation. RAP is a randomized algorithm that takes as input a collection of
m statistical queries Q and answers Q(D) ∈ Rm (derived from some dataset
D) and outputs a dataset D′ by attempting to solve the following optimization
objective:

arg min
D′
‖Q(D′)− Q(D)‖2, [2]

¶Thus, R1 corresponds to the row that we are most confident in, R2 the row that we have
the next most confidence in, and so on.
#In fact, what we call RAP in this paper is the simpler algorithm simply called RP in ref.
5—for “relaxed projection.” We do not use the adaptive step.

using a randomized continuous optimization heuristic. RAP is initialized with
parameter θ , discussed below. Roughly speaking, θ is an initial guess for
what D′ should look like and can be used to capture additional distributional
information available to the attacker. In our work, this will either be a
uniformly randomly generated dataset of a given schema (corresponding to
no additional information) or a dataset believed to have been drawn from
the same “distribution” as D; more information on this is provided below. The
notation] is used to indicate union with multiplicities. For example, if x appears
2 times in D′1 and 1 time in D′2, then it appears 3 times in D′1 ] D′2.

Our method, RAP-RANK, described in Algorithm 1, consists of running RAP
for K times to produce datasets D′1, . . . , D′K and outputting the confidence set

R(
⊎K

k=1 D′k).

Algorithm 1: Overview of RAP-RANK

Input: A set of queries Q and their evaluations Q(D) on some private
dataset D.
Parameters: number of runs K
for k = 1, . . . , K do

Initialize RAP’s parameter θk (either uniformly or to a baseline dataset).
Output D′k ∼ RAP(Q, Q(D), θk)

Let D∗ =
⊎K

k=1 D′k
Output: Confidence set R(D∗)

For the purposes of this paper, it is enough to understand that RAP is
a randomized algorithm that attempts to find a dataset D′ which solves the
optimization problem in Eq. 2. But briefly, it works as follows:

1. Datasets D′ are defined over a discrete domain, but RAP extends this to
a larger continuous domain and extends the queries Q to be defined and
differentiable over this larger continuous domain.

2. Starting from its initialization θ , RAP then optimizes for a “relaxed” dataset
D̃′ in this continuous domain by using stochastic gradient descent on the
(now differentiable) objective in Eq. 2.

3. Finally, RAP randomly “rounds” D̃′ back to a discrete dataset D′ over the
original domain.

Thus, there are potentially three sources of randomness in RAP: A (potentially)
random initialization point θ , the randomness of stochastic gradient descent,
and the final randomized rounding. When we initialize θ uniformly randomly
(corresponding to no prior information), our attack makes use of all three of
these sources of randomness. When we initialize θ to a baseline dataset, we
make use of only the 2nd two sources of randomness. We use baseline datasets
that result from sampling Census data at various geographic resolutions.

Although the performance of RAP-RANK as measured by MATCH-RATE is an
empirical finding, RAP-RANK is a theoretically motivated heuristic. In particular,
if we imagine that when RAP-RANK is initialized at a sample θ from a prior
distribution on datasets, it samples a dataset D′k from the posterior distribution
on datasets given the statistics Q(D), then the ranking it constructs would be the
correct ranking of points by their (posterior) likelihood of appearing in the true
dataset D. We briefly elaborate on this theoretical intuition in the next section.

C. Some Theoretical Intuition. There is a simple Bayesian argument that
provides some theoretical intuition for our resampling method for confidently
reconstructing rows of the private dataset D. Imagine that there is some prior
distribution P over all datasets with the same format or schema as D. For instance,
P could simply be uniform over all datasets with the same schema as D, but any
P suffices in the argument that follows. Let us assume that the private dataset
D is drawn according to this prior (denoted D ∼ P), and we are given some
queries Q as well as their numerical values on D, denoted Q(D). Let us assume
for the moment� that if we initialize RAP at a sample drawn from the prior P and
run it once, then the resulting reconstructed dataset D′ is actually a sample
from the posterior distribution given the queries and their computed values:

�Shortly we shall discuss the realism of this assumption.

PNAS 2023 Vol. 120 No. 8 e2218605120 https://doi.org/10.1073/pnas.2218605120 3 of 9
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D′ ∼ P|〈Q, Q(D)〉. How could we use the ability to sample such datasets D′ from
the posterior to estimate the probability that particular points x are elements
of D?

Let χ(D, D′) be any random variable determined by the draws D ∼ P,
D′ ∼ P|〈Q, Q(D)〉—for instance, a natural χ(D, D′) for our purposes would
take a value equal to 1 if both D and D′ contain some particular row r, and 0
otherwise. The attacker is interested in the expectation

ED∼P,D′∼P|〈Q,Q(D)〉[χ(D, D′)], [3]

which in the example above is simply the probability that both D and D′ contain
the row r. The difficulty is that although given Q(D), we have assumed that we
can take samples D′ ∼ P|〈Q, Q(D)〉, we cannot evaluate the predicateχ(D, D′)
because we do not have access to the true dataset D from which the statistics
Q(D) were computed.

However, it is not hard to derive that this expectation is identical to:

ED∼P

[
ED̃∼P|〈Q,Q(D)〉,D′∼P|〈Q,Q(D)〉

[
χ(D̃, D′)

]]
. [4]

In other words, rather than computing χ(D, D′), we can instead compute
χ(D̃, D′), where D̃ and D′ are both independent samples from the posterior
distribution P|〈Q, Q(D)〉—i.e., under our assumption, two reconstructions that
result from running RAP twice with fresh randomness. The reason for this
equivalence is that in the two expectations above, the joint distributions of
〈D, Q(D), D′〉 and 〈D̃, Q(D), D′〉 are identical since D and D′ are conditionally
independent given Q(D) and both are distributed according to P|〈Q, Q(D)〉. In
other words, if we wish to estimate the expectation [3], we can do so by instead
estimating the expectation [4], which involves evaluating the predicate only on
datasets drawn from the posterior rather than the prior. Concretely, rows that
are more likely to appear in two or more draws from the posterior are also more
likely to appear in D drawn from the prior and D′ from the posterior.

The assumption above that RAP samples from the posterior is in general
unrealistic and we have no formal evidence to support it. But to the extent that
RAP even approximates draws from the posterior given Q(D), this argument
provides a plausible explanation for why the ranking R(D∗)might approximately
correspond to an ordering of data points by their probability of appearing in
the true dataset D. In general, sampling from a posterior in a space of high-
dimensional datasets and queries is a computationally intractable problem (25),
but this does not rule out effective heuristics on real datasets, and we believe
that this Bayesian argument provides at a minimum some insight about why
methods such as ours work well in practice.

2. Empirical Findings

In this section, we describe our primary experimental find-
ings. Additional and more fine-grained results are provided in
SI Appendix, including plots of Match-Rate for all 50 states on
the Census data.

A. Datasets and Queries.
A.1. US decennial census.

Dataset.We conduct experiments on subsets of synthetic US
Census microdata released by the Census Bureau during the
development of the 2020 Census Disclosure Avoidance System
(DAS). These synthetic microdata were generated so that they
have similar statistics when compared to the real 2010 Census
microdata. We use the 2020-05-27 vintage Privacy-protected
Microdata File (PPMF) (26). In our experiments, we treat the
PPMF as the ground-truth microdata, even though it is synthetic,
since the true microdata have never been released. Despite being
generated with the intent to mimic statistics of the real Census
microdata, we find that it has several statistical peculiarities**,

**For example, the PPMF data have an unusually large number of data points that appear
exactly 5 times in their block or tract. This statistical artifact persists even for small blocks:

so, in this paper, we emphasize the relative performance of our
methods to baselines (all computed on the PPMF data), rather
than the absolute numbers.

The 2020-05-27 vintage PPMF consists of 312,471,327 rows,
each representing a (synthetic) response for one individual in
the 2010 Decennial Census. The columns correspond to the
following attributes: the location of the respondent’s home (state,
county, census tract, and census block); their housing type (either
a housing unit or one of 8 types of group quarters); their sex (male
or female); their age (an integer in {0, . . . , 115}); their race (one of
the 63 racial categories defined by the US Office of Management
and Budget Standards)††; and whether they have Hispanic or
Latino origin or not.

We evaluate reconstruction attacks on subsets of the PPMF
that contain all rows belonging to a given census tract or census
block. According to the US Census Bureau, census tracts typically
have between 1,200 and 8,000 people with an optimum size of
4,000 and cover a contiguous area (although their geographic
sizes vary widely depending on population density). Each census
tract is partitioned into up to 10,000 census blocks, which are
typically small regions bounded by features such as roads, streams,
and property lines.

In our tract-level experiments, we randomly select one tract
from each state. In our block-level experiments, we select for
each state the block closest in size to mean block size as well
as the largest block. In addition, we select blocks closest in size
to M/C , where M is the maximum block size in the state and
C ∈ {2, 4, 8, 16}. Thus, in total, we evaluate on 50 tracts and
300 blocks.

Statistical Queries.The US Census Bureau publishes a col-
lection of data tables containing statistics computed from
the microdata at various levels of geographic granularity. For
example, some tables are published at the block level, meaning
that they release a copy of that table for every census block
in the United States, while others are published at the census
tract or county level. Our experiments attempt to reconstruct
the microdata belonging to census tracts and blocks based on
statistics contained in the Census tables.

We use the same tables that the Census Bureau used in their
internal reconstruction attack of the 2010 Census data (21).
These are the following tables from the Census Summary File 1:‡‡

P1: Total population,
P6: Race (total races tallied),
P7: Hispanic or Latino origin by race (total races tallied),
P9: Hispanic or Latino and not Hispanic or Latino by race.
P11: Hispanic or Latino, and Not Hispanic or Latino by race

for the population 18 y and over,
P12: Sex by age for selected age categories (roughly 5 y buckets),
P12 A-I: Sex by age for selected age categories (iterated by race).
PCT12: Sex by single year age.
PCT12 A-N: Sex by single year age (iterated by race).

All of the P tables are released at the block level, while the PCT
tables are released only at the census tract level.

For example, the data have blocks of size 20 that consist of only four “types” of people, with
each type appearing with cardinality 5. This has the effect of inflating the performance of
the strongest of our baselines, since when splitting a dataset in half, a point that appears
5 times will constitute a match 93.75% of the time (i.e., whenever it is not the case that all
five copies of the point fall into the same half of the random split).
††The 63 race categories correspond to any nonempty subset of the following: American-
Indian or Alaska Native, Asian, Black or African-American, Native Hawaiian, or Other Pacific
Islander, White, and Other.
‡‡Summary File 1 has been renamed to the Demographic and Housing Characteristics
File (DHC) for the 2020 US Census. In all cases, we refer to tables and data products by
their names used in the 2010 Census.
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Each table defines a collection of statistical queries that will
be evaluated on the Census microdata. For example, cell 3 of
table P12 counts the number of male children under the age
of 5. Since P12 is a block-level table, cell 3 corresponds to one
statistical query per census block. Similarly, each cell in a tract-
level table encodes one statistical query per census tract. All of the
statistical queries in the above tables can be encoded as follows:
Given k pairs (coli, Si)ki=1, where coli is a column name, and Si
is a subset of that column’s domain, and either a census block or
tract identifier, count the number of microdata rows belonging
to that tract or block for which coli ∈ Si for all i ∈ [k].§§ Thus, in
logical terms, queries are in a conjunctive normal form (CNF),
meaning that they consist of a conjunction (logical AND) of
clauses, with each clause being a disjunction (logical OR) of
allowed values for a column.

For example, cell 3 of table P12 encodes queries for each block
with col1 = Age, S1 = {0, . . . , 4}, and col2 = Sex, S2 = {Male}.
When we perform tract-level reconstructions, we use queries
defined by all of the above tables. For block-level reconstructions,
we use only the block-level tables (i.e., excluding tables PCT12
and PCT12 A-N). In order to minimize the total number of
queries, we omit several table cells that are either repeated or can
be computed as a sum or difference of other table cells.

The statistical queries encoded by the Census data tables vary
significantly in the value of k (number of clauses in a conjunction)
and the size of the sets (clauses) Si. There are 2 cells with k = 0
(total population at the block and tract level), 27 cells with k = 1,
352 cells with k = 2, 1,915 cells with k = 3, and 1,259 cells
with k = 4. The size of the sets Si ranges from 1 to 98.

To verify the correctness of our implementation of the
statistical queries from the tables above, we compared the output
of our implementation to tables released by the IPUMS National
Historical Geographic Information System (NHGIS). For each
vintage of the PPMF released by the US Census Bureau, the
NHGIS computes the census tables from that PPMF vintage.¶¶

We compared our implementations of queries from tables P1,
P6, P7, P9, P11, P12, and P12 A-I on all census blocks in
the United States and Puerto Rico and found no discrepancies.
Unfortunately, the PCT12 and PCT12 A-N tables were not
included in the NHGIS tabulations for the 2020-05-27 vintage
PPMF, so we were unable to verify our implementation of these
queries (but their structure is very similar to the block-level
queries).
A.2. American community survey (ACS).

Dataset.We conduct additional experiments on a suite of
datasets derived from US Census, introduced in ref. 22.## The
Folktables package defines datasets for each of the 50 states
and various tasks. Each task consists of a subset of columns
(A detailed list of the attributes can be found in (SI Appendix,
Table 1). Note that we discretize numerical columns into
10 equal-sized bins) from the American Community Survey
(ACS) corpus. These datasets provide a diverse and extensive
collection of datasets helpful in experimenting with practical
algorithms. We use the five largest states (California, New
York, Texas, Florida, and Pennsylvania) which together with
the three tasks (employment, coverage, and mobility) constitute
15 datasets. Our experiments therefore seek to reconstruct

§§The Census tables report row counts, but in our experiments, we convert counts to
fractions by dividing by the population of the tract or block we are reconstructing.
¶¶The NHGIS tables constructed from each PPMF vintage are available at
https://www.nhgis.org/privacy-protected-2010-census-demonstration-data.
##The Folktables package comes with MIT license, and terms of service of the ACS data
can be found at https://www.census.gov/data/developers/about/terms-of-service.html.

individuals at the state level. Compared to datasets derived from
the Census Bureau’s May 2020 Demonstration Data Product
(PPMF), based on the 2010 Census, the Folktables ACS datasets
contain many more attributes (Table 1), helping us demonstrate
how our reconstruction attack scales up to higher dimensional
datasets.

We note that while the datasets distributed by the Folktables
package are derived from the ACS microdata, the package was
designed for evaluating machine learning algorithms, and there
exist many differences from the actual 1-y and 5-y statistical tables
released by the Census Bureau each year. As mentioned above,
each task contains only a subset of features collected on the
ACS questionnaire and released in the 1-y Public Use Microdata
Sample (PUMS). Moreover, survey responses are collected at
both the household and person level, but Folktables treats records
only at the person level. Lastly, in the ACS PUMS, each survey
response is assigned a sampling weight, which can then be
used to calculate weighted statistics (e.g., estimated population
sizes and income percentiles) that estimate population-level
statistics. Folktables ignores these weights, and so, the statistics
we calculate and use for experiments are unweighted tabula-
tions. Folktables also ignores the replicate weights on the ACS
PUMS that the Census Bureau recommends users implement to
generate measures of uncertainty associated with the weighted
statistics.

Statistical Queries.For each ACS dataset, we compute a set of
k-way marginal statistics. A marginal query counts the number
of people in a dataset whose features match a given value. An
example of a 2-way marginal query is “How many people are
female and have income greater than 50K.” The formal definition
is as follows:

Definition 2.1 (k-way Marginal Queries): Let X =
∏

i∈[d ] Xi
be a discrete data domain with d features, whereXi is the domain
of the i-th feature. A k-way marginal query is defined by a set of
k features S ⊆ [d ], together with a target value v ∈

∏
i∈S Xi for

each feature in S. Given such a pair (S, v), let X (S, v) = {x ∈
X : xi = vi∀i ∈ S} denote the set of points in X that match v
on each feature i ∈ S. Then, consider the function φS,v defined
as φS,v(x) = 1{x ∈ X (S, v)}, where 1 is the indicator function.
The corresponding k-way marginal query is the statistical query
defined as

qS,v(D) =
1
|D|

∑
x∈D

φS,v(x),

for any dataset D.

We explore the efficacy of our reconstruction attack on ACS
datasets when all 2-way or 3-way marginal queries are released.

B. Baselines. In isolation, the Match-Rate of RAP-Rank de-
scribed in the previous section cannot provide enough informa-
tion to indicate a privacy breach. If the dataset distribution is very
low entropy, and we know the distribution, then we might expect

Table 1. For each Folktables task,we list thenumber of
attributes, total dimension of such attributes, and the
number of all 2- and 3-way marginal queries
Task # Attr Dim # 2-way # 3-way

Employment 16 108 5154 144910
Coverage 18 107 5160 149848
Mobility 21 141 9137 362309
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to obtain a high Match-Rate simply by randomly guessing
rows that are likely under the data distribution. Therefore, we
would like to compare the Match-Rate of our attack to the
Match-Rate of baselines of various strengths corresponding to
increasingly precise knowledge of the data distribution.

Given a baseline distribution P, we consider a Match-

Rate baseline that results from ordering the rows ofX according
to their likelihood of appearing in a randomly sampled dataset
D ∼ P. In practice, the domain size |X | is often too large to
enumerate; an alternative in this case is to sample a large collection
of rows X ∼ P and then use the empirical distribution over X as
a proxy for the distribution overD, using the confidence set R(X )
as our baseline—i.e., the ranking that results from ordering rows
by their likelihood in the empirical distribution over X , sampled
from P.

We compare to several different baselines, each corresponding
to a set of increasingly informed prior distributions. First, in
order to simulate a prior that is identical to the distribution from
which the private dataset is sampled, we randomly partition the
real dataset into two halves D and Dholdout . We treat D as the
private dataset which we compute statistical queries on and seek
to reconstruct rows from, while Dholdout is used to produce a
baseline confidence set R(Dholdout). Here, by construction, D and
Dholdout are identically distributed, which allows us to compare
to the very strong baseline of the “real” sampling distribution for
real datasets. Of course, as a synthetic construction originating
from the real data, R(Dholdout) should generally be viewed as an
unrealistically strong benchmark.

We also compare to a natural hierarchy of benchmarks that
correspond to fixing a prior based on knowledge of Census data
at different levels of granularity. US Census data is organized
according to geographic entities that have a hierarchical structure.
We consider a natural hierarchy of prior distributions in which
a lower level in the hierarchy is more informative than higher
levels. For example, for block-level reconstruction, we consider
benchmarks defined by sampled rows from the tract, county, and
state (Dtract, Dcounty, Dstate) that each block is contained in, as
well as the benchmark defined by samples from all rows in the
dataset (Dnational). We note that in block-level reconstruction
experiments, Dholdout corresponds to a block-level prior, and so
we refer to this set of rows as Dblock in Results. Similarly for tract-
level reconstruction experiments, Dholdout is referred to as Dtract.

As we describe in more detail in Results, we run reconstruction
of Census tracts both with and without the attribute correspond-
ing to the block each individual resides in. For the setting in
which the block attribute is included, the county, state, and
national baselines are at an extreme disadvantage, since the
majority of individuals in Dcounty, Dstate, and Dnational reside
in a tract different than those found in D—and so necessarily
have different block values. To compensate for this disadvantage
(otherwise crippling to the baselines), in these cases we strengthen
the baselines and instead populate the block attribute according to
the distribution of blocks found inD. For example, the state-level
baseline can be interpreted as a prior in which the distribution
of blocks follows that of D and the distribution of the remaining
attributes follows that of Dstate.

C. Results. Our primary reconstruction rate visualization tech-
nique is as follows.

Recall that both RAP-Rank and our baselines each output
some confidence set R. Therefore, for both RAP-Rank and our
baselines, we plot Match-RateD,k(R) against k, or in other
words, the fraction of candidates of rank k or higher that exactly

match some row in D. Because the many datasets on which we
run our reconstruction attack vary considerably in size and in
some of our plots, we average our results over many datasets, in
the ensuing plots, we express rank k as a fraction of the number
of unique rows in D, which we denote as u. In other words,
the x-axis measures k/u. This allows us to average results across
different samples of data (e.g., different geographic entities for
both Census and ACS experiments) on a common scale for the
x-axis (Let û be the number of unique rows in Dholdout . In cases
where û is smaller than the number of unique rows in D, we
instead set u = û. Otherwise, our baseline derived from Dholdout
would be penalized for outputting a candidate list of size smaller
than u).

In our first set of experiments, we randomly select a tract from
each state, which forms the private dataset D from which we
compute the Census query–answer pairs. We run RAP-Rank

using these queries, and starting from a uniformly random ini-
tialization. (We shortly describe a natural and realistic alternative
initialization scheme that improves performance considerably.)
We plot the match rate as a function of k/u. We similarly plot
the match rate of each of our baselines. In the Fig. 1 Left, we plot
the reconstruction rates after averaging across the selected tract
from all 50 states. (State-by-state plots that comprise this average
are provided in SI Appendix, Figs. S1, S2, S5, and S6.)

As expected, in general, at higher ranks (lower x-axis values),
the reconstruction rates are reasonably high and then fall at lower
ranks. The Left panel shows that the RAP-Rank reconstruction
rates are considerably higher than all but the strongest baseline—
resampling at the tract level—which is much higher still. Recall
that since this is a tract-level reconstruction, Dtract here is in fact
Dholdout—i.e., the very strong artificial benchmark constructed
from the dataset we are attacking itself. We see that the other
baselines—Dcounty, Dstate, and Dnational—perform quite poorly.
This is partially an artifact of requiring that they reconstruct
the BLOCK attribute. Since blocks appearing within a tract
appear in no other tracts, the nontract baselines have a poor
chance of reconstruction since they are sampling at a coarser
geographic level. Recall that we have strengthened these baselines
by letting the BLOCK attribute be distributed according to the
empirical distribution of blocks in the true dataset D, but still,
these baselines are at a disadvantage because they have lost the
correlation between the BLOCK attribute and all other features.
Therefore, in Fig. 1 Right, we reproduce the same experiment
in which we have dropped the BLOCK attribute. This makes
the reconstruction task easier and improves the performance of
RAP-Rank as well as all of the baselines. The most dramatic
increase is in the performance of the Dcounty, Dstate, and Dnational
baselines, but we also see that RAP-Rank now performs relatively
better compared to the Dtract /Dholdout baseline. RAP-Rank now
has reconstruction rates above 0.9 up to k/u ≈ 0.5. These results
establish that RAP-Rank can perfectly reconstruct rows well
beyond what sampling access alone permits except at the most
local level. In other words, RAP-Rank is far from simply “getting
lucky”—its optimization process is deliberately and effectively
exploiting the actual query–answer pairs, not simply benefiting
from having data similarly distributed to the private dataset.
Nevertheless, the ordering of the baselines and of RAP-Rank is
unchanged—i.e., RAP-Rank outperforms all of the baselines
except for the artificial Dtract baseline.

We next observe that there is an asymmetry in our experiments
that treats RAP-Rank in what could be considered an unfair
manner: We assert that there are strong “baseline” distributions
that are related to the data we are trying to reconstruct, and
yet, we have initialized our attack RAP-Rank at a uniformly
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Fig. 1. The panel on the Left plots the Match-Rate of RAP-Rank and our various baselines on a tract-level reconstruction when we use the BLOCK attribute. The
panel on the Right plots the Match-Rate of RAP-Rank and our various baselines when the BLOCK attribute has been removed. Both panels show the average
performance of RAP-Rank and the baselines averaged over a randomly selected tract from each of the 50 US states. In both cases, RAP-Rank is initialized
uniformly at random (i.e., we have not initialized at a baseline distribution).

random dataset, without giving it the benefit of this knowledge.
If indeed these baseline distributions are public knowledge, then
an attacker could make use of them as well. Thus, our next
set of experiments consists of initializing RAP-Rank at the
baseline that we are comparing it to and see that this causes it
to significantly outperform all baseline—including Dtract (which
we recall is the strong baseline Dholdout ), even with the BLOCK
attribute. In other words, if we view the baseline as a public
prior distribution, then giving RAP-Rank access to it leads to the
ability to significantly improve over it.

In Fig. 2, we show that results averaged across randomly chosen
tracts for all 50 states in which we have now initialized to the
tract baseline and compare to that sampling baseline (once again
including the BLOCK feature). The results are clear: When we
level the playing field by seeding RAP-Rank with knowledge
of the tract baseline distribution, it now outperforms the tract
baseline. We can interpret the area between the two curves
in Fig. 2 as a measure of the additional reconstruction risk
introduced by RAP-Rank on the query–answer pairs, beyond
the baseline risk of tract sampling.

In Fig. 3, we show that RAP-Rank remains an effective
reconstruction attack even at the most fine-grained geographic
level, which corresponds to Census blocks. The Left panel again
shows Match-Rate for RAP-Rank initialized randomly and
compared to all the sampling baselines. Here, we again see the
same qualitative performance—even with random initialization,
RAP-Rank outperforms all of the sampling baselines except for
constructed Dblock (which we recall in this case is the artificially
constructed Dholdout ). The Right panel shows results when we
initialize RAP-Rank at Dblock. In this case, we again see that
initializing at the benchmark distribution causes RAP-Rank to
significantly outperform the benchmark. This figure is again
averaging over attacks on blocks from all 50 states. (The state-by-
state plots that comprise this average are provided in SI Appendix,
Figs. S7 and S8.)

We conclude by briefly describing a second set of experiments
on three datasets from the ACS Folktable package, corresponding

to the employment, coverage, and mobility tasks. We consider
these alternate datasets both to show the generality of our
methods beyond decennial Census data (in particular, the
ACS Folktables datasets have much higher dimensionality than
the decennial Census data) and in order to do a controlled
comparison of queries of differing power (as opposed to
the fixed set of queries provided for the decennial Census
data).

In Fig. 4, we show the reconstruction rates obtained by letting
the query set Q be the sets of all 2-way and 3-way marginal
queries on these three ACS datasets, and as in the Census

Fig. 2. Initializing RAP-Rank at the tract baseline significantly improves its
performance, leading it to outperform the tract baseline. Here, the BLOCK
attribute is included and must be reconstructed to constitute a match.

PNAS 2023 Vol. 120 No. 8 e2218605120 https://doi.org/10.1073/pnas.2218605120 7 of 9
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Fig. 3. The panel on the Left plots the Match-Rate of RAP-Rank and our various baselines on a block-level reconstruction when RAP-Rank is initialized to a
uniformly random dataset. The panel on the Right shows the performance of RAP-Rank when it is initialized to Dblock and compares its performance to Dblock .

data, we compare to the very strong Dholdout baseline. Two
remarks are in order. First, despite the low complexity of these
queries compared to Census queries—2-way and 3-way marginals
reference only pairs and triples of columns, respectively—both
considerably outperform the Dholdout baseline even when RAP-

Rank is initialized randomly, maintaining reconstruction rates
well above 0.8 even at the lowest rank. This suggests that not
only is aggregation insufficient for privacy, neither is restriction
to simple queries. In fact, on this dataset, and with these
simple queries, our reconstruction attack performs even better—
outperforming the strongest baseline even without the benefit of
being initialized at that baseline.

Second, the lift in performance in moving from 2-way
marginals to 3-way marginals is large, demonstrating the recon-
structive power of even slightly more complex queries.

3. Limitations and Conclusions

We have shown the power of a class of reconstruction attacks
that can not only produce a candidate reconstructed dataset
with a high intersection with the true dataset but also produce a
ranking of rows that empirically corresponds to their likelihood of
appearing in the true dataset. We have shown that from statistics
that were actually released as part of the 2010 Decennial US
Census, it is possible to run our attack and that its Match-

Rate is high—particularly at lower values of k, indicating high
confidence reconstruction of a subset of the rows. Moreover,
even with random initialization (equivalently, viewing RAP-

Rank as having an uninformative prior), RAP-Rank outper-
forms all but the most stringent (artificial) benchmark that we
construct. Finally, we can reliably outperform even the most
stringent benchmark if we initialize RAP-Rank at the benchmark

Fig. 4. We select state–task combinations from the Folktables dataset, comparing the top k candidate Match-Rate of RAP-Rank against the baseline, which
is derived from the holdout split. For each task, we average results over the five largest states (by population) in the United States (i.e., California, New York,
Texas, Florida, and Pennsylvania). We initialize RAP-Rank randomly, showing results where Q is all 2- and 3-way marginals.
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distribution—consistently with the premise that if a distribution
is publicly known (and so is sensible to consider as a public
benchmark), then we should assume that attackers can make use
of it as well.

Nevertheless, our attack is not without limitations. First and
foremost, our reconstructions of Census decennial data are far
from recovering every row in the private data. The primary threat
is that we can recover some fraction of the rows with confidence.
Moreover, our attack does not produce calibrated confidence
scores. That is, we produce a ranking of rows R, but an attacker
without access to the ground-truth would be unable to compute
the Match-Rate as a function of k as we do in our plots and so
would not know a priori how much confidence to put in each
reconstructed row. We highlight that developing an attack that
can produce calibrated estimates of its match rate is a concrete
technical problem whose solution would improve our attack.
Nevertheless, a ranking (known to be empirically correlated with

Match-Rate) is sufficient for an attacker to prioritize the rows
of a reconstruction for some other external validation procedure
or attack.

Data, Materials, and Software Availability. Previously published data were
used for this work (U.S. Census Microdata; ACS Folktables Data Package).
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